ceruletide and Colitis

ceruletide has been researched along with Colitis* in 2 studies

Other Studies

2 other study(ies) available for ceruletide and Colitis

ArticleYear
RIPK3 deficiency or catalytically inactive RIPK1 provides greater benefit than MLKL deficiency in mouse models of inflammation and tissue injury.
    Cell death and differentiation, 2016, 09-01, Volume: 23, Issue:9

    Necroptosis is a caspase-independent form of cell death that is triggered by activation of the receptor interacting serine/threonine kinase 3 (RIPK3) and phosphorylation of its pseudokinase substrate mixed lineage kinase-like (MLKL), which then translocates to membranes and promotes cell lysis. Activation of RIPK3 is regulated by the kinase RIPK1. Here we analyze the contribution of RIPK1, RIPK3, or MLKL to several mouse disease models. Loss of RIPK3 had no effect on lipopolysaccharide-induced sepsis, dextran sodium sulfate-induced colitis, cerulein-induced pancreatitis, hypoxia-induced cerebral edema, or the major cerebral artery occlusion stroke model. However, kidney ischemia-reperfusion injury, myocardial infarction, and systemic inflammation associated with A20 deficiency or high-dose tumor necrosis factor (TNF) were ameliorated by RIPK3 deficiency. Catalytically inactive RIPK1 was also beneficial in the kidney ischemia-reperfusion injury model, the high-dose TNF model, and in A20(-/-) mice. Interestingly, MLKL deficiency offered less protection in the kidney ischemia-reperfusion injury model and no benefit in A20(-/-) mice, consistent with necroptosis-independent functions for RIPK1 and RIPK3. Combined loss of RIPK3 (or MLKL) and caspase-8 largely prevented the cytokine storm, hypothermia, and morbidity induced by TNF, suggesting that the triggering event in this model is a combination of apoptosis and necroptosis. Tissue-specific RIPK3 deletion identified intestinal epithelial cells as the major target organ. Together these data emphasize that MLKL deficiency rather than RIPK1 inactivation or RIPK3 deficiency must be examined to implicate a role for necroptosis in disease.

    Topics: Animals; Apoptosis; Ceruletide; Colitis; Dextran Sulfate; Disease Models, Animal; Female; Inflammation; Lipopolysaccharides; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Pancreatitis; Protein Kinases; Receptor-Interacting Protein Serine-Threonine Kinases; Reperfusion Injury; Sepsis; Systemic Inflammatory Response Syndrome; Tumor Necrosis Factor alpha-Induced Protein 3

2016
Effects of Muclin (Dmbt1) deficiency on the gastrointestinal system.
    American journal of physiology. Gastrointestinal and liver physiology, 2008, Volume: 294, Issue:3

    The Dmbt1 gene encodes alternatively spliced glycoproteins that are either membrane-associated or secreted epithelial products. Functions proposed for Dmbt1 include it being a tumor suppressor, having roles in innate immune defense and inflammation, and being a Golgi-sorting receptor in the exocrine pancreas. The heavily sulfated membrane glycoprotein mucin-like glycoprotein (Muclin) is a Dmbt1 product that is strongly expressed in organs of the gastrointestinal (GI) system. To explore Muclin's functions in the GI system, the Dmbt1 gene was targeted to produce Muclin-deficient mice. Muclin-deficient mice have normal body weight gain and are fertile. The Muclin-deficient mice did not develop GI tumors, even when crossed with mice lacking the known tumor suppressor p53. When colitis was induced by dextran sulfate sodium, there was no significant difference in disease severity in Muclin-deficient mice. Also, when acute pancreatitis was induced with supraphysiological caerulein, there was no difference in disease severity in the Muclin-deficient mice. Exocrine pancreatic function was impaired, as measured by attenuated neurohormonal-stimulated amylase release from Muclin-deficient acinar cells. Also, by [(35)S]Met/Cys pulse-chase analysis, traffic of newly synthesized protein to the stimulus-releasable pool was significantly retarded in Muclin-deficient cells compared with wild type. Thus Muclin deficiency impairs trafficking of regulated proteins to a stimulus-releasable pool in the exocrine pancreas.

    Topics: Amylases; Animals; Blotting, Western; Calcium-Binding Proteins; Ceruletide; Colitis; Dextran Sulfate; DNA-Binding Proteins; Electrophoresis, Polyacrylamide Gel; Gastrointestinal Neoplasms; Gastrointestinal Tract; Immunohistochemistry; Mice; Mice, Inbred C57BL; Mice, Knockout; Mucins; Pancreas; Pancreatitis; Tumor Suppressor Protein p53; Tumor Suppressor Proteins

2008