cerulenin and Glioma

cerulenin has been researched along with Glioma* in 3 studies

Other Studies

3 other study(ies) available for cerulenin and Glioma

ArticleYear
Inhibition of Fatty Acid Synthase Decreases Expression of Stemness Markers in Glioma Stem Cells.
    PloS one, 2016, Volume: 11, Issue:1

    Cellular metabolic changes, especially to lipid metabolism, have recently been recognized as a hallmark of various cancer cells. However, little is known about the significance of cellular lipid metabolism in the regulation of biological activity of glioma stem cells (GSCs). In this study, we examined the expression and role of fatty acid synthase (FASN), a key lipogenic enzyme, in GSCs. In the de novo lipid synthesis assay, GSCs exhibited higher lipogenesis than differentiated non-GSCs. Western blot and immunocytochemical analyses revealed that FASN is strongly expressed in multiple lines of patient-derived GSCs (G144 and Y10), but its expression was markedly reduced upon differentiation. When GSCs were treated with 20 μM cerulenin, a pharmacological inhibitor of FASN, their proliferation and migration were significantly suppressed and de novo lipogenesis decreased. Furthermore, following cerulenin treatment, expression of the GSC markers nestin, Sox2 and fatty acid binding protein (FABP7), markers of GCSs, decreased while that of glial fibrillary acidic protein (GFAP) expression increased. Taken together, our results indicate that FASN plays a pivotal role in the maintenance of GSC stemness, and FASN-mediated de novo lipid biosynthesis is closely associated with tumor growth and invasion in glioblastoma.

    Topics: Aged; Aged, 80 and over; Cell Movement; Cell Proliferation; Cerulenin; Fatty Acid Synthases; Female; Gene Expression Regulation, Neoplastic; Glioma; Humans; Male; Middle Aged; Neoplastic Stem Cells; Tumor Cells, Cultured

2016
Overexpression of fatty acid synthase in human gliomas correlates with the WHO tumor grade and inhibition with Orlistat reduces cell viability and triggers apoptosis.
    Journal of neuro-oncology, 2014, Volume: 118, Issue:2

    Fatty acid synthase (FASN), catalyzing the de novo synthesis of fatty acids, is known to be deregulated in several cancers. Inhibition of this enzyme reduces tumor cell proliferation. Unfortunately, adverse effects and chemical instability prevent the in vivo use of the best-known inhibitors, Cerulenin and C75. Orlistat, a drug used for obesity treatment, is also considered as a potential FASN inhibitor, but its impact on glioma cell biology has not yet been described. In this study, we analyzed FASN expression in human glioma samples and primary glioblastoma cell cultures and the effects of FASN inhibition with Orlistat, Cerulenin and C75. Immunohistochemistry followed by densitometric analysis of 20 glioma samples revealed overexpression of FASN that correlated with the WHO tumor grade. Treatment of glioblastoma cells with these inhibitors resulted in a significant, dose-dependent reduction in tumor cell viability and fatty acid synthesis. Compared to Cerulenin and C75, Orlistat was a more potent inhibitor in cell cultures and cell lines. In LN229, cell-growth was reduced by 63.9 ± 8.7 % after 48 h and 200 µM Orlistat compared to controls; in LT68, the reduction in cell growth was 76.3 ± 23.7 %. Nuclear fragmentation assay and Western blotting analysis after targeting FASN with Orlistat demonstrated autophagy and apoptosis. Organotypic slice cultures treated with Orlistat showed reduced proliferation after Ki67 staining and increased caspase-3 cleavage. Our results suggest that FASN may be a therapeutic target in malignant gliomas and identify Orlistat as a possible anti-tumor drug in this setting.

    Topics: 4-Butyrolactone; Apoptosis; Autophagy; Brain; Brain Neoplasms; Caspase 3; Cell Line, Tumor; Cell Proliferation; Cell Survival; Cells, Cultured; Cerulenin; Dose-Response Relationship, Drug; Fatty Acid Synthase, Type I; Fatty Acid Synthesis Inhibitors; Glioblastoma; Glioma; Humans; Lactones; Neoplasm Grading; Orlistat; Tissue Culture Techniques

2014
Fatty acid synthase: a novel target for antiglioma therapy.
    British journal of cancer, 2006, Oct-09, Volume: 95, Issue:7

    High levels of fatty acid synthase (FAS) expression have been observed in several cancers, including breast, prostate, colon and lung carcinoma, compared with their respective normal tissue. We present data that show high levels of FAS protein in human and rat glioma cell lines and human glioma tissue samples, as compared to normal rat astrocytes and normal human brain. Incubating glioma cells with the FAS inhibitor cerulenin decreased endogenous fatty acid synthesis by approximately 50%. Cell cycle analysis demonstrated a time- and dose-dependent increase in S-phase cell arrest following cerulenin treatment for 24 h. Further, treatment with cerulenin resulted in time- and dose-dependent decreases in glioma cell viability, as well as reduced clonogenic survival. Increased apoptotic cell death and PARP cleavage were observed in U251 and SNB-19 cells treated with cerulenin, which was independent of the death receptor pathway. Overexpressing Bcl-2 inhibited cerulenin-mediated cell death. In contrast, primary rat astrocytes appeared unaffected. Finally, RNAi-mediated knockdown of FAS leading to reduced FAS enzymatic activity was associated with decreased glioma cell viability. These findings suggest that FAS might be a novel target for antiglioma therapy.

    Topics: Animals; Apoptosis; Astrocytes; Base Sequence; Blotting, Western; Brain; Brain Neoplasms; Cell Line, Tumor; Cerulenin; Collagen Type XI; Dose-Response Relationship, Drug; Enzyme Inhibitors; Fatty Acid Synthases; Flow Cytometry; Glioma; Humans; Molecular Sequence Data; Proto-Oncogene Proteins c-bcl-2; Radiation Tolerance; Rats; RNA, Small Interfering; Transfection

2006