cerivastatin and Precursor-Cell-Lymphoblastic-Leukemia-Lymphoma

cerivastatin has been researched along with Precursor-Cell-Lymphoblastic-Leukemia-Lymphoma* in 1 studies

Other Studies

1 other study(ies) available for cerivastatin and Precursor-Cell-Lymphoblastic-Leukemia-Lymphoma

ArticleYear
Cerivastatin triggers tumor-specific apoptosis with higher efficacy than lovastatin.
    Clinical cancer research : an official journal of the American Association for Cancer Research, 2001, Volume: 7, Issue:7

    The statin family of drugs inhibits 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase, the rate-limiting enzyme of the mevalonate pathway, and is used clinically as a safe and effective approach in the control of hypercholesterolemia. We have shown previously (Dimitroulakos, J., Nohynek, D., Backway, K. L., Hedley, D. W., Yeger, H., Freedman, M. H., Minden, M D., and Penn, L. Z. Increased sensitivity of acute myelogenous leukemias to lovastatin-induced apoptosis: a potential therapeutic approach. Blood, 93: 1308-1318, 1999) that lovastatin, a prototypic member of the statin family, can induce apoptosis of human acute myeloid leukemia (AML) cells in a sensitive and specific manner. In the present study, we evaluated the relative potency and mechanism of action of the newer synthetic statins, fluvastatin, atorvastatin, and cerivastatin, to trigger tumor-specific apoptosis. Cerivastatin is at least 10 times more potent than the other statins at inducing apoptosis in AML cell lines. Cerivastatin-induced apoptosis is reversible with the addition of the immediate product of the HMG-CoA reductase reaction, mevalonate, or with a distal product of the pathway, geranylgeranyl pyrophosphate. This suggests protein geranylgeranylation is an essential downstream component of the mevalonate pathway for cerivastatin similar to lovastatin-induced apoptosis. The enhanced potency of cerivastatin expands the number of AML patient samples as well as the types of malignancies, which respond to statin-induced apoptosis with acute sensitivity. Cells derived from acute lymphocytic leukemia are only weakly sensitive to lovastatin cytotoxicity but show robust response to cerivastatin. Importantly, cerivastatin is not cytotoxic to nontransformed human bone marrow progenitors. These results strongly support the further testing of cerivastatin as a novel anticancer therapeutic alone and in combination with other agents in vivo.

    Topics: Acute Disease; Apoptosis; Atorvastatin; Cell Division; Dose-Response Relationship, Drug; Fatty Acids, Monounsaturated; Fluvastatin; Heptanoic Acids; Humans; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Indoles; Leukemia, Myeloid; Lovastatin; Neoplasms; Precursor Cell Lymphoblastic Leukemia-Lymphoma; Pyridines; Pyrroles; Sensitivity and Specificity; Tumor Cells, Cultured

2001