cereulide and Inflammation

cereulide has been researched along with Inflammation* in 2 studies

Other Studies

2 other study(ies) available for cereulide and Inflammation

ArticleYear
Chronic cereulide exposure causes intestinal inflammation and gut microbiota dysbiosis in mice.
    Environmental pollution (Barking, Essex : 1987), 2021, Nov-01, Volume: 288

    Known as a cause of food poisoning, Bacillus cereus (B. cereus) is widespread in nature. Cereulide, the heat-stable and acid-resistant emetic toxin which is produced by some B. cereus strains, is often associated with foodborne outbreaks, and causes acute emetic toxicity at high dosage exposure. However, the toxicological effect and underlying mechanism caused by chronic low-dose cereulide exposure require to be further addressed. In the study, based on mouse model, cereulide exposure (50 μg/kg body weight) for 28 days induced intestinal inflammation, gut microbiota dysbiosis and food intake reduction. According to the cell models, low dose cereulide exposure disrupted the intestinal barrier function and caused intestinal inflammation, which were resulted from endoplasmic reticulum (ER) stress IRE1/XBP1/CHOP pathway activation to induce cell apoptosis and inflammatory cytokines production. For gut microbiota, cereulide decreased the abundances of Lactobacillus and Oscillospira. Furthermore, cereulide disordered the metabolisms of gut microbiota, which exhibited the inhibitions of butyrate and tryptophan. Interestingly, cereulide exposure also inhibited the tryptophan hydroxylase to produce the serotonin in the gut and brain, which might lead to depression-like food intake reduction. Butyrate supplementation (100 mg/kg body weight) significantly reduced intestinal inflammation and serotonin biosynthesis suppression caused by cereulide in mice. In conclusion, chronic cereulide exposure induced ER stress to cause intestinal inflammation, gut microbiota dysbiosis and serotonin biosynthesis suppression. IRE1 could be the therapeutic target and butyrate supplementation is the potential prevention strategy.

    Topics: Animals; Bacillus cereus; Depsipeptides; Dysbiosis; Food Contamination; Gastrointestinal Microbiome; Inflammation; Mice

2021
Combinatory effects of cereulide and deoxynivalenol on in vitro cell viability and inflammation of human Caco-2 cells.
    Archives of toxicology, 2020, Volume: 94, Issue:3

    Deoxynivalenol (DON), one of the most abundant mycotoxins in cereal products, was recently detected with other mycotoxins and the emetic bacterial toxin cereulide (CER) in maize porridge. Within a cereal-based diet, co-exposure to these toxins is likely, hence raising the question of combinatory toxicological effects. While the toxicological evaluation of DON has quite progressed, consequences of chronic, low-dose CER exposure are still insufficiently explored. Information about the combinatory toxicological effects of these toxins is lacking. In the present study, we investigated how CER (0.1-100 ng/mL) and DON (0.01-10 µg/mL) alone and in a constant ratio of 1:100 (CER:DON) affect the cytotoxicity and immune response of differentiated human intestinal Caco-2 cells. While DON alone reduced cell viability only in the highest concentration (10 µg/mL), CER caused severe cytotoxicity upon prolonged incubation (starting from 10 ng/mL after 24 h and 48 h, 2.5 ng/mL and higher after 72 h). After 72 h, synergistic effects were observed at 2.5 ng/mL CER and 0.25 µg/mL DON. Different endpoints of inflammation were investigated in interleukin-1β-stimulated Caco-2 cells. Notably, DON-induced interleukin-8 transcription and secretion were diminished by the presence of 10 and 25 ng/mL CER after short-term (5 h) incubation, indicating immunosuppressive properties. We hypothesise that habitual consumption of cereal-based foods co-contaminated with CER and DON may cause synergistic cytotoxic effects and an altered immune response in the human intestine. Therefore, further research concerning effects of co-occurring bacterial toxins and mycotoxins on the impairment of intestinal barrier integrity, intestinal inflammation and the promotion of malnutrition is needed.

    Topics: Caco-2 Cells; Cell Survival; Depsipeptides; Diet; Emetics; Food Contamination; Humans; Inflammation; Interleukin-1beta; Interleukin-8; Intestinal Mucosa; Intestines; Mycotoxins; Trichothecenes

2020