ceramide-1-phosphate and Neoplasms

ceramide-1-phosphate has been researched along with Neoplasms* in 9 studies

Reviews

8 review(s) available for ceramide-1-phosphate and Neoplasms

ArticleYear
Novel signaling aspects of ceramide 1-phosphate.
    Biochimica et biophysica acta. Molecular and cell biology of lipids, 2020, Volume: 1865, Issue:4

    The bioactive sphingolipid ceramide 1-phosphate (C1P) regulates key physiologic cell functions and is implicated in a number of metabolic alterations and pathological processes. Initial studies using different types of fibroblasts and monocytes/macrophages revealed that C1P was mitogenic and that it promoted cell survival through inhibition of apoptosis. Subsequent studies implicated C1P in inflammatory responses with a specific role as pro-inflammatory agent. Specifically, C1P potently stimulated cytosolic phospholipase A

    Topics: Animals; Cell Movement; Cell Proliferation; Ceramides; Humans; Inflammation; Neoplasm Invasiveness; Neoplasms; Phosphotransferases (Alcohol Group Acceptor); Signal Transduction

2020
Role of bioactive sphingolipids in physiology and pathology.
    Essays in biochemistry, 2020, 09-23, Volume: 64, Issue:3

    Sphingolipids are a class of complex lipids containing a backbone of sphingoid bases, namely the organic aliphatic amino alcohol sphingosine (Sph), that are essential constituents of eukaryotic cells. They were first described as major components of cell membrane architecture, but it is now well established that some sphingolipids are bioactive and can regulate key biological functions. These include cell growth and survival, cell differentiation, angiogenesis, autophagy, cell migration, or organogenesis. Furthermore, some bioactive sphingolipids are implicated in pathological processes including inflammation-associated illnesses such as atherosclerosis, rheumatoid arthritis, inflammatory bowel disease (namely Crohn's disease and ulcerative colitis), type II diabetes, obesity, and cancer. A major sphingolipid metabolite is ceramide, which is the core of sphingolipid metabolism and can act as second messenger, especially when it is produced at the plasma membrane of cells. Ceramides promote cell cycle arrest and apoptosis. However, ceramide 1-phosphate (C1P), the product of ceramide kinase (CerK), and Sph 1-phosphate (S1P), which is generated by the action of Sph kinases (SphK), stimulate cell proliferation and inhibit apoptosis. Recently, C1P has been implicated in the spontaneous migration of cells from some types of cancer, and can enhance cell migration/invasion of malignant cells through interaction with a Gi protein-coupled receptor. In addition, CerK and SphK are implicated in inflammatory responses, some of which are associated with cancer progression and metastasis. Hence, targeting these sphingolipid kinases to inhibit C1P or S1P production, or blockade of their receptors might contribute to the development of novel therapeutic strategies to reduce metabolic alterations and disease.

    Topics: Animals; Cell Movement; Ceramides; Humans; Inflammation; Lysophospholipids; Neoplasms; Phosphotransferases (Alcohol Group Acceptor); Signal Transduction; Sphingolipids; Sphingosine

2020
The Role of Ceramide 1-Phosphate in Tumor Cell Survival and Dissemination.
    Advances in cancer research, 2018, Volume: 140

    Ceramide 1-phosphate (C1P) is a pleiotropic bioactive sphingolipid metabolite capable of regulating key physiologic cell functions and promoting pathologic processes. Concerning pathology, C1P or ceramide kinase (CerK), the enzyme responsible for its biosynthesis in mammalian cells, has been implicated in cancer cell growth, survival, and dissemination and is involved in inflammatory responses associated with different types of cancer cells. The mechanisms or signaling pathways mediating these C1P actions have only been partially described. This chapter reviews recent progress in identifying signal transduction pathways involved in the promotion of cancer cell growth, survival, and dissemination by CerK and C1P.

    Topics: Animals; Cell Survival; Ceramides; Humans; Neoplasms; Phosphotransferases (Alcohol Group Acceptor); Signal Transduction

2018
The Role of Sphingosine-1-Phosphate and Ceramide-1-Phosphate in Inflammation and Cancer.
    Mediators of inflammation, 2017, Volume: 2017

    Inflammation is part of our body's response to tissue injury and pathogens. It helps to recruit various immune cells to the site of inflammation and activates the production of mediators to mobilize systemic protective processes. However, chronic inflammation can increase the risk of diseases like cancer. Apart from cytokines and chemokines, lipid mediators, particularly sphingosine-1-phosphate (S1P) and ceramide-1-phosphate (C1P), contribute to inflammation and cancer. S1P is an important player in inflammation-associated colon cancer progression. On the other hand, C1P has been recognized to be involved in cancer cell growth, migration, survival, and inflammation. However, whether C1P is involved in inflammation-associated cancer is not yet established. In contrast, few studies have also suggested that S1P and C1P are involved in anti-inflammatory pathways regulated in certain cell types. Ceramide is the substrate for ceramide kinase (CERK) to yield C1P, and sphingosine is phosphorylated to S1P by sphingosine kinases (SphKs). Biological functions of sphingolipid metabolites have been studied extensively. Ceramide is associated with cell growth inhibition and enhancement of apoptosis while S1P and C1P are associated with enhancement of cell growth and survival. Altogether, S1P and C1P are important regulators of ceramide level and cell fate. This review focuses on S1P and C1P involvement in inflammation and cancer with emphasis on recent progress in the field.

    Topics: Animals; Biomarkers, Tumor; Ceramides; Humans; Inflammation; Inflammation Mediators; Lysophospholipids; Models, Biological; Neoplasms; Phosphotransferases (Alcohol Group Acceptor); Signal Transduction; Sphingosine

2017
Alteration of ceramide 1-O-functionalization as a promising approach for cancer therapy.
    Anti-cancer agents in medicinal chemistry, 2012, Volume: 12, Issue:4

    Sphingolipids, which are complex lipidic components of the cell membranes, lie in a key position to modulate the pathways of trans-membrane signaling and allow the cell to adapt to environmental stresses. In malignancies, reduced production of some sphingolipid species able to induce apoptosis such as ceramide and conversely, increased levels of some other metabolites involved in tumor progression and drug resistance of cancer cells, are often described. In this context, the discovery of new chemical entities able to specifically modify ceramide metabolism should offer novel pharmacological tools in cancer therapy. The review dedicates particular attention to the enzymes that modify ceramide at the C1-OH position generating other biologically important sphingolipids in cancer, such as sphingomyelin, ceramide-1-phosphate or glucosylceramide. Findings reported in the literature leading to the development of new chemical entities specifically designed to achieve the above goals have been collected and are discussed. The effects of enzyme inhibitors of sphingomyelin synthase, ceramide kinase and glucosylceramide synthase on cancer cell proliferation, sensitivity to chemotherapeutics, induction of apoptosis or growth of xenografts are presented.

    Topics: Animals; Apoptosis; Ceramides; Enzyme Inhibitors; Glucosyltransferases; Humans; Neoplasms; Phosphotransferases (Alcohol Group Acceptor); Transferases (Other Substituted Phosphate Groups)

2012
Ceramide kinase: the first decade.
    Cellular signalling, 2011, Volume: 23, Issue:6

    It has been some 20 years since the initial discovery of ceramide 1-phosphate (C1P) and nearly a decade since ceramide kinase (CERK) was cloned. Many studies have shown that C1P is important for membrane biology and for the regulation of membrane-bound proteins, and the CERK enzyme has appeared to be tightly regulated in order to control both ceramide levels and production of C1P. Furthermore, C1P made by CERK has emerged as a genuine signalling entity. However, it represents only part of the C1P pool that is available in the cell, therefore suggesting that alternative unknown C1P-producing mechanisms may also play a role. Recent technological developments for measuring complex sphingolipids in biological samples, together with the availability of Cerk-deficient animals as well as potent CERK inhibitors, have now provided new grounds for investigating C1P biology further. Here, we will review the current understanding of CERK and C1P in terms of biochemistry and functional implications, with particular attention to C1P produced by CERK.

    Topics: Amino Acid Motifs; Animals; Cell Proliferation; Cells, Cultured; Ceramides; Gene Expression Regulation; Humans; Immune System; Inflammation Mediators; Neoplasms; Nervous System; Phosphotransferases (Alcohol Group Acceptor); Protein Structure, Tertiary; Protein Transport; Signal Transduction; Sphingolipids; Up-Regulation

2011
Ceramide kinase and the ceramide-1-phosphate/cPLA2alpha interaction as a therapeutic target.
    Current drug targets, 2008, Volume: 9, Issue:8

    Ceramide kinase (CERK) was discovered more than a decade ago. Since then, numerous reports have been published demonstrating a role for CERK in various signal transduction pathways involved in inflammation, immunity or cancer. In this review, the biosynthesis of ceramide-1-phosphate (C1P) and the various roles of CERK and C1P in biological mechanisms will be overviewed. We will focus on the role of C1P in eicosanoid synthesis, more specifically, in the activation and translocation of cPLA(2)alpha. Furthermore, the possible therapeutic relevance of inhibitors of these mechanisms is discussed.

    Topics: Animals; Ceramides; Drug Delivery Systems; Eicosanoids; Group IV Phospholipases A2; Humans; Inflammation; Neoplasms; Phosphotransferases (Alcohol Group Acceptor); Signal Transduction

2008
The metabolism and function of sphingolipids and glycosphingolipids.
    Cellular and molecular life sciences : CMLS, 2007, Volume: 64, Issue:17

    Sphingolipids and glycosphingolipids are emerging as major players in many facets of cell physiology and pathophysiology. We now present an overview of sphingolipid biochemistry and physiology, followed by a brief presentation of recent advances in translational research related to sphingolipids. In discussing sphingolipid biochemistry, we focus on the structure of sphingolipids, and their biosynthetic pathways--the recent identification of most of the enzymes in this pathway has led to significant advances and better characterization of a number of the biosynthetic steps, and the relationship between them. We then discuss some roles of sphingolipids in cell physiology, particularly those of ceramide and sphingosine-1-phosphate, and mention current views about how these lipids act in signal transduction pathways. We end with a discussion of sphingolipids and glycosphingolipids in the etiology and pathology of a number of diseases, such as cancer, immunity, cystic fibrosis, emphysema, diabetes, and sepsis, areas in which sphingolipids are beginning to take a central position, even though many of the details remain to be elucidated.

    Topics: Animals; Apoptosis; Ceramides; Cystic Fibrosis; Diabetes Mellitus; Emphysema; Glycosphingolipids; Humans; Immune System; Mice; Neoplasms; Nervous System Diseases; Sepsis; Sphingolipids

2007

Other Studies

1 other study(ies) available for ceramide-1-phosphate and Neoplasms

ArticleYear
The role of sphingosine-1 phosphate and ceramide-1 phosphate in trafficking of normal stem cells and cancer cells.
    Expert opinion on therapeutic targets, 2014, Volume: 18, Issue:1

    A common feature of many types of cells is their responsiveness to chemotactic gradients of factors for which they express the corresponding receptors. The most studied chemoattractants so far are peptide-based growth factors and a family of cytokines endowed with strong chemotactic properties, called chemokines. However, additional evidence has accumulated that, in addition to these peptide-based chemoattractants, an important role in cell migration is played by bioactive lipids.. Solid evidence has accumulated that two bioactive phosphorylated sphingolipids that are derivatives of sphingolipid metabolism, namely sphingosine-1-phosphate (S1P) and ceramide-1-phosphate (C1P), are potent chemoattractants for a variety of cells. In this review, we will discuss the effect of these two phosphorylated sphingolipids on the trafficking of normal and malignant cells, and, in particular, we will focus on their role in trafficking of normal hematopoietic stem/progenitor cells. Unlike other mediators, S1P under steady-state conditions maintain a steep gradient between interstitial fluid and peripheral blood and lymph across the endothelial barrier, which is important in the egress of cells from bone marrow. Both S1P and C1P may be upregulated in damaged tissues, which may result in reversal of this gradient.. S1P and C1P are important regulators of the trafficking of normal and malignant cells, and modification of their biological effects will have important applications in optimizing stem cell mobilization and homing, tissue organ/regeneration, and preventing cancer metastasis.

    Topics: Biological Transport; Ceramides; Humans; Lysophospholipids; Neoplasms; Sphingosine; Stem Cells

2014