ceftriaxone and Gram-Negative-Bacterial-Infections

ceftriaxone has been researched along with Gram-Negative-Bacterial-Infections* in 5 studies

Trials

1 trial(s) available for ceftriaxone and Gram-Negative-Bacterial-Infections

ArticleYear
In vitro activity of ceftobiprole against pathogens from two phase 3 clinical trials of complicated skin and skin structure infections.
    Antimicrobial agents and chemotherapy, 2008, Volume: 52, Issue:9

    In phase 3 clinical trials for ceftobiprole treatment of complicated skin and skin structure infections, 1,219 gram-positive and 276 gram-negative aerobic baseline pathogens were identified. Ceftobiprole inhibited all staphylococcal isolates, including methicillin-resistant strains, at MICs of

    Topics: Anti-Bacterial Agents; Cephalosporins; Enterobacteriaceae; Gram-Negative Bacteria; Gram-Negative Bacterial Infections; Gram-Positive Bacteria; Gram-Positive Bacterial Infections; Humans; Microbial Sensitivity Tests; Pseudomonas aeruginosa; Skin Diseases, Bacterial; Staphylococcus

2008

Other Studies

4 other study(ies) available for ceftriaxone and Gram-Negative-Bacterial-Infections

ArticleYear
Surveillance and correlation of antibiotic prescription and resistance of Gram-negative bacteria in Singaporean hospitals.
    Antimicrobial agents and chemotherapy, 2010, Volume: 54, Issue:3

    A surveillance study was performed in four Singapore public hospitals from 2006 to 2008 to determine the correlation between antibiotic prescription and Gram-negative bacterial antimicrobial resistance. Targeted organisms included ceftriaxone- and ciprofloxacin-resistant Escherichia coli and Klebsiella pneumoniae, as well as imipenem-resistant Pseudomonas aeruginosa and Acinetobacter spp. Antibiotic prescription data were collated in the WHO anatomical therapeutic chemical (ATC)/defined daily dose (DDD) format, while antibiotic resistance was expressed as incidence density adjusted for total inpatient-days every quarter. Individual trends were determined by linear regression, while possible associations between antibiotic prescription and resistance were evaluated via cross-correlation analysis. Results over 3 years indicated significantly rising incidence densities of ceftriaxone- and ciprofloxacin-resistant E. coli and imipenem-resistant Acinetobacter spp. (blood isolates only). Antimicrobial-resistant Klebsiella pneumoniae rates declined. The prescription rates of piperacillin-tazobactam, ertapenem, meropenem, ciprofloxacin, and levofloxacin increased significantly, while imipenem and moxifloxacin prescription decreased. Cross-correlation analysis demonstrated possible associations between prescription of fluoroquinolones and ciprofloxacin-resistant E. coli (R(2) = 0.46), fluoroquinolones and ceftriaxone-resistant E. coli (R(2) = 0.47), and carbapenems and imipenem-resistant Acinetobacter spp. (R(2) = 0.48), all at zero time lag. Changes in meropenem prescription were associated with a similar trend in imipenem-resistant Acinetobacter blood isolates after a 3-month time lag. No correlation was found between cephalosporin use and resistance. In conclusion, our data demonstrated correlation between prescription of and Gram-negative bacterial resistance to several, but not all, key antimicrobial agents in Singapore hospitals. In areas where Gram-negative bacterial resistance is endemic and prescription of broad-spectrum antimicrobial agents is high, factors other than antimicrobial usage may be equally important in maintaining high resistance rates.

    Topics: Anti-Bacterial Agents; Drug Resistance, Bacterial; Drug Utilization; Gram-Negative Bacteria; Gram-Negative Bacterial Infections; Hospitals, Public; Humans; Incidence; Microbial Sensitivity Tests; Singapore

2010
Emergence of high levels of extended-spectrum-beta-lactamase-producing gram-negative bacilli in the Asia-Pacific region: data from the Study for Monitoring Antimicrobial Resistance Trends (SMART) program, 2007.
    Antimicrobial agents and chemotherapy, 2009, Volume: 53, Issue:8

    Of 3,004 gram-negative bacilli collected from intra-abdominal infections in the Asia-Pacific region during 2007, 42.2% and 35.8% of Escherichia coli and Klebsiella spp., respectively, were extended-spectrum beta-lactamase (ESBL) positive. Moreover ESBL rates in India for E. coli, Klebsiella pneumoniae, and Klebsiella oxytoca were 79.0%, 69.4%, and 100%, respectively. ESBL-positive E. coli rates were also relatively high in China (55.0%) and Thailand (50.8%). Ertapenem and imipenem were the most active drugs tested, inhibiting over 90% of all species, including ESBL-positive isolates with the exception of Pseudomonas aeruginosa isolates (<90% susceptible to all study drugs) and ESBL-positive Klebsiella pneumoniae isolates (<90% susceptible to all study drugs except imipenem). Quinolones achieved 90% inhibition levels only against ESBL-negative K. pneumoniae and ESBL-negative K. oxytoca. A decline in ampicillin-sulbactam activity was noted, with only 34.5% of all Enterobacteriaceae inhibited in this study.

    Topics: Anti-Bacterial Agents; beta-Lactamases; beta-Lactams; China; Drug Resistance, Bacterial; Ertapenem; Escherichia coli; Gram-Negative Bacteria; Gram-Negative Bacterial Infections; Imipenem; India; Klebsiella; Quinolones; Thailand

2009
Antimicrobial-resistant pathogens in intensive care units in Canada: results of the Canadian National Intensive Care Unit (CAN-ICU) study, 2005-2006.
    Antimicrobial agents and chemotherapy, 2008, Volume: 52, Issue:4

    Between 1 September 2005 and 30 June 2006, 19 medical centers collected 4,180 isolates recovered from clinical specimens from patients in intensive care units (ICUs) in Canada. The 4,180 isolates were collected from 2,292 respiratory specimens (54.8%), 738 blood specimens (17.7%), 581 wound/tissue specimens (13.9%), and 569 urinary specimens (13.6%). The 10 most common organisms isolated from 79.5% of all clinical specimens were methicillin-susceptible Staphylococcus aureus (MSSA) (16.4%), Escherichia coli (12.8%), Pseudomonas aeruginosa (10.0%), Haemophilus influenzae (7.9%), coagulase-negative staphylococci/Staphylococcus epidermidis (6.5%), Enterococcus spp. (6.1%), Streptococcus pneumoniae (5.8%), Klebsiella pneumoniae (5.8%), methicillin-resistant Staphylococcus aureus (MRSA) (4.7%), and Enterobacter cloacae (3.9%). MRSA made up 22.3% (197/884) of all S. aureus isolates (90.9% of MRSA were health care-associated MRSA, and 9.1% were community-associated MRSA), while vancomycin-resistant enterococci (VRE) made up 6.7% (11/255) of all enterococcal isolates (88.2% of VRE had the vanA genotype). Extended-spectrum beta-lactamase (ESBL)-producing E. coli and K. pneumoniae occurred in 3.5% (19/536) and 1.8% (4/224) of isolates, respectively. All 19 ESBL-producing E. coli isolates were PCR positive for CTX-M, with bla CTX-M-15 occurring in 74% (14/19) of isolates. For MRSA, no resistance against daptomycin, linezolid, tigecycline, and vancomycin was observed, while the resistance rates to other agents were as follows: clarithromycin, 89.9%; clindamycin, 76.1%; fluoroquinolones, 90.1 to 91.8%; and trimethoprim-sulfamethoxazole, 11.7%. For E. coli, no resistance to amikacin, meropenem, and tigecycline was observed, while resistance rates to other agents were as follows: cefazolin, 20.1%; cefepime, 0.7%; ceftriaxone, 3.7%; gentamicin, 3.0%; fluoroquinolones, 21.1%; piperacillin-tazobactam, 1.9%; and trimethoprim-sulfamethoxazole, 24.8%. Resistance rates for P. aeruginosa were as follows: amikacin, 2.6%; cefepime, 10.2%; gentamicin, 15.2%; fluoroquinolones, 23.8 to 25.5%; meropenem, 13.6%; and piperacillin-tazobactam, 9.3%. A multidrug-resistant (MDR) phenotype (resistance to three or more of the following drugs: cefepime, piperacillin-tazobactam, meropenem, amikacin or gentamicin, and ciprofloxacin) occurred frequently in P. aeruginosa (12.6%) but uncommonly in E. coli (0.2%), E. cloacae (0.6%), or K. pneumoniae (0%). In conclusion, S. aureus (MSSA and MRSA), E.

    Topics: Adolescent; Adult; Aged; Anti-Bacterial Agents; beta-Lactamases; Canada; Drug Resistance, Bacterial; Female; Gram-Negative Bacteria; Gram-Negative Bacterial Infections; Gram-Positive Bacteria; Gram-Positive Bacterial Infections; Humans; Intensive Care Units; Male; Microbial Sensitivity Tests; Middle Aged; Population Surveillance

2008
In vitro activity of doripenem, a carbapenem for the treatment of challenging infections caused by gram-negative bacteria, against recent clinical isolates from the United States.
    Antimicrobial agents and chemotherapy, 2008, Volume: 52, Issue:12

    Doripenem, a 1beta-methylcarbapenem, is a broad-spectrum antibiotic approved for the treatment of complicated urinary tract and complicated intra-abdominal infections. An indication for hospital-acquired pneumonia including ventilator-associated pneumonia is pending. The current study examined the activity of doripenem against recent clinical isolates for the purposes of its ongoing clinical development and future longitudinal analysis. Doripenem and comparators were tested against 12,581 U.S. clinical isolates collected between 2005 and 2006 including isolates of Staphylococcus aureus, coagulase-negative staphylococci, Streptococcus pneumoniae, Enterobacteriaceae, Pseudomonas aeruginosa, and Acinetobacter spp. MICs (microg/ml) were established by broth microdilution. By MIC(90), doripenem was comparable to imipenem and meropenem in activity against S. aureus (methicillin susceptible, 0.06; resistant, 8) and S. pneumoniae (penicillin susceptible, < or =0.015; resistant, 1). Against ceftazidime-susceptible Enterobacteriaceae, the MIC(90) of doripenem (0.12) was comparable to that of meropenem (0.12) and superior to that of imipenem (2), though susceptibility of isolates exceeded 99% for all evaluated carbapenems. The activity of doripenem was not notably altered against ceftazidime-nonsusceptible or extended-spectrum beta-lactamase screen-positive Enterobacteriaceae. Doripenem was the most potent carbapenem tested against P. aeruginosa (MIC(90)/% susceptibility [%S]: ceftazidime susceptible = 2/92%S, nonsusceptible = 16/61%S; imipenem susceptible = 1/98.5%S, nonsusceptible = 8/56%S). Against imipenem-susceptible Acinetobacter spp., doripenem (MIC(90) = 2, 89.1%S) was twice as active by MIC(90) as were imipenem and meropenem. Overall, doripenem potency was comparable to those of meropenem and imipenem against gram-positive cocci and doripenem was equal or superior in activity to meropenem and imipenem against Enterobacteriaceae, including beta-lactam-nonsusceptible isolates. Doripenem was the most active carbapenem tested against P. aeruginosa regardless of beta-lactam resistance.

    Topics: Anti-Bacterial Agents; Carbapenems; Doripenem; Gram-Negative Bacteria; Gram-Negative Bacterial Infections; Gram-Positive Bacterial Infections; Gram-Positive Cocci; Humans; Microbial Sensitivity Tests; United States

2008