ceftazidime has been researched along with Gram-Positive-Bacterial-Infections* in 4 studies
1 trial(s) available for ceftazidime and Gram-Positive-Bacterial-Infections
Article | Year |
---|---|
In vitro activity of ceftobiprole against pathogens from two phase 3 clinical trials of complicated skin and skin structure infections.
In phase 3 clinical trials for ceftobiprole treatment of complicated skin and skin structure infections, 1,219 gram-positive and 276 gram-negative aerobic baseline pathogens were identified. Ceftobiprole inhibited all staphylococcal isolates, including methicillin-resistant strains, at MICs of =4 mug/ml. Against Enterobacteriaceae and Pseudomonas aeruginosa isolates, the potency of ceftobiprole was similar to that of cefepime. Topics: Anti-Bacterial Agents; Cephalosporins; Enterobacteriaceae; Gram-Negative Bacteria; Gram-Negative Bacterial Infections; Gram-Positive Bacteria; Gram-Positive Bacterial Infections; Humans; Microbial Sensitivity Tests; Pseudomonas aeruginosa; Skin Diseases, Bacterial; Staphylococcus | 2008 |
3 other study(ies) available for ceftazidime and Gram-Positive-Bacterial-Infections
Article | Year |
---|---|
Genetic and biochemical characterization of CAD-1, a chromosomally encoded new class A penicillinase from Carnobacterium divergens.
Carnobacterium divergens clinical isolates BM4489 and BM4490 were resistant to penicillins but remained susceptible to combinations of amoxicillin-clavulanic acid and piperacillin-tazobactam. Cloning and sequencing of the responsible determinant from BM4489 revealed a coding sequence of 912 bp encoding a class A beta-lactamase named CAD-1. The bla(CAD-1) gene was assigned to a chromosomal location in the two strains that had distinct pulsed-field gel electrophoresis patterns. CAD-1 shared 53% and 42% identity with beta-lactamases from Bacillus cereus and Staphylococcus aureus, respectively. Alignment of CAD-1 with other class A beta-lactamases indicated the presence of 25 out of the 26 isofunctional amino acids in class A beta-lactamases. Escherichia coli harboring bla(CAD-1) exhibited resistance to penams (benzylpenicillin and amoxicillin) and remained susceptible to amoxicillin in combination with clavulanic acid. Mature CAD-1 consisted of a 34.4-kDa polypeptide. Kinetic analysis indicated that CAD-1 exhibited a narrow substrate profile, hydrolyzing benzylpenicillin, ampicillin, and piperacillin with catalytic efficiencies of 6,600, 3,200, and 2,900 mM(-1) s(-1), respectively. The enzyme did not interact with oxyiminocephalosporins, imipenem, or aztreonam. CAD-1 was inhibited by tazobactam (50% inhibitory concentration [IC(50)] = 0.27 microM), clavulanic acid (IC(50) = 4.7 microM), and sulbactam (IC(50) = 43.5 microM). The bla(CAD-1) gene is likely to have been acquired by BM4489 and BM4490 as part of a mobile genetic element, since it was not found in the susceptible type strain CIP 101029 and was adjacent to a gene for a resolvase. Topics: Amino Acid Sequence; beta-Lactams; Chromosomes, Bacterial; Cloning, Molecular; Electrophoresis, Gel, Pulsed-Field; Gram-Positive Bacteria; Gram-Positive Bacterial Infections; Humans; Infant, Newborn; Kinetics; Microbial Sensitivity Tests; Molecular Sequence Data; Penicillin Resistance; Penicillinase; Sequence Alignment; Sequence Analysis, DNA; Substrate Specificity | 2008 |
In vitro activity of doripenem, a carbapenem for the treatment of challenging infections caused by gram-negative bacteria, against recent clinical isolates from the United States.
Doripenem, a 1beta-methylcarbapenem, is a broad-spectrum antibiotic approved for the treatment of complicated urinary tract and complicated intra-abdominal infections. An indication for hospital-acquired pneumonia including ventilator-associated pneumonia is pending. The current study examined the activity of doripenem against recent clinical isolates for the purposes of its ongoing clinical development and future longitudinal analysis. Doripenem and comparators were tested against 12,581 U.S. clinical isolates collected between 2005 and 2006 including isolates of Staphylococcus aureus, coagulase-negative staphylococci, Streptococcus pneumoniae, Enterobacteriaceae, Pseudomonas aeruginosa, and Acinetobacter spp. MICs (microg/ml) were established by broth microdilution. By MIC(90), doripenem was comparable to imipenem and meropenem in activity against S. aureus (methicillin susceptible, 0.06; resistant, 8) and S. pneumoniae (penicillin susceptible, < or =0.015; resistant, 1). Against ceftazidime-susceptible Enterobacteriaceae, the MIC(90) of doripenem (0.12) was comparable to that of meropenem (0.12) and superior to that of imipenem (2), though susceptibility of isolates exceeded 99% for all evaluated carbapenems. The activity of doripenem was not notably altered against ceftazidime-nonsusceptible or extended-spectrum beta-lactamase screen-positive Enterobacteriaceae. Doripenem was the most potent carbapenem tested against P. aeruginosa (MIC(90)/% susceptibility [%S]: ceftazidime susceptible = 2/92%S, nonsusceptible = 16/61%S; imipenem susceptible = 1/98.5%S, nonsusceptible = 8/56%S). Against imipenem-susceptible Acinetobacter spp., doripenem (MIC(90) = 2, 89.1%S) was twice as active by MIC(90) as were imipenem and meropenem. Overall, doripenem potency was comparable to those of meropenem and imipenem against gram-positive cocci and doripenem was equal or superior in activity to meropenem and imipenem against Enterobacteriaceae, including beta-lactam-nonsusceptible isolates. Doripenem was the most active carbapenem tested against P. aeruginosa regardless of beta-lactam resistance. Topics: Anti-Bacterial Agents; Carbapenems; Doripenem; Gram-Negative Bacteria; Gram-Negative Bacterial Infections; Gram-Positive Bacterial Infections; Gram-Positive Cocci; Humans; Microbial Sensitivity Tests; United States | 2008 |
In vitro and in vivo antibacterial activities of heteroaryl isothiazolones against resistant gram-positive pathogens.
The activities of several tricyclic heteroaryl isothiazolones (HITZs) against an assortment of gram-positive and gram-negative clinical isolates were assessed. These compounds target bacterial DNA replication and were found to possess broad-spectrum activities especially against gram-positive strains, including antibiotic-resistant staphylococci and streptococci. These included methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-nonsusceptible staphylococci, and quinolone-resistant strains. The HITZs were more active than the comparator antimicrobials in most cases. For gram-negative bacteria, the tested compounds were less active against members of the family Enterobacteriaceae but showed exceptional potencies against Haemophilus influenzae, Moraxella catarrhalis, and Neisseria spp. Good activity against several anaerobes, as well as Legionella pneumophila and Mycoplasma pneumoniae, was also observed. Excellent bactericidal activity against staphylococci was observed in time-kill assays, with an approximately 3-log drop in the numbers of CFU/ml occurring after 4 h of exposure to compound. Postantibiotic effects (PAEs) of 2.0 and 1.7 h for methicillin-susceptible S. aureus and MRSA strains, respectively, were observed, and these were similar to those seen with moxifloxacin at 10x MIC. In vivo efficacy was demonstrated in murine infections by using sepsis and thigh infection models. The 50% protective doses were Topics: Animals; Anti-Infective Agents; Drug Resistance, Bacterial; Gram-Positive Bacteria; Gram-Positive Bacterial Infections; Mice; Microbial Sensitivity Tests; Quinolones; Thiazoles | 2007 |