cefquinome has been researched along with Mastitis* in 3 studies
1 trial(s) available for cefquinome and Mastitis
Article | Year |
---|---|
Pharmacokinetics and pharmacodynamics of intramammary cefquinome in lactating goats with and without experimentally induced Staphylococcus aureus mastitis.
Values for pharmacokinetic variables are usually obtained in healthy animals, whereas drugs are frequently administered to diseased animals. This study investigated cefquinome pharmacokinetics in healthy goats and goats with experimentally induced mastitis. Five adult lactating goats received 75 mg of cefquinome intramammary infusion using a commercially available product into one udder half in healthy goats and goats with clinical mastitis that was induced by intracisternal infusion of 100 cfu of Staphylococcus aureus ATCC 29213 suspended in 5 ml of sterile culture broth. Cefquinome concentrations were determined in plasma and skimmed milk samples using high-performance liquid chromatography (HPLC). Pharmacodynamics was investigated using the California Mastitis Test and pH of milk. Experimentally induced mastitis significantly increased the California Mastitis Test score and pH, and decreased the maximal cefquinome concentration and shortened the half-life in milk when compared to healthy goats. In conclusion, mastitis facilitated the absorption of cefquinome from the mammary gland of lactating goats and induced marked changes in milk pH, emphasizing the importance of performing pharmacokinetic studies of antimicrobial agents in infected animals. Topics: Animals; Anti-Bacterial Agents; Cephalosporins; Female; Goat Diseases; Goats; Lactation; Mastitis; Milk; Staphylococcal Infections; Staphylococcus aureus | 2019 |
2 other study(ies) available for cefquinome and Mastitis
Article | Year |
---|---|
The pharmacokinetics and pharmacodynamics of cefquinome against Streptococcus agalactiae in a murine mastitis model.
Cefquinome is a new generation cephalosporin that is effective in the treatment of mastitis in animals. In this study, we evaluated the associations between the specific pharmacokinetics and pharmacodynamics (PK/PD) of cefquinome and its antibacterial activity against Streptococcus agalactiae in a mouse model of mastitis. After a single intramammary dose of cefquinome (30, 60, 120, and 240 μg/mammary gland), the concentration of cefquinome in plasma was analysed by liquid chromatography with tandem mass spectrometry (HPLC/MS-MS). The PK parameters were calculated using a one-compartment first-order absorption model. Antibacterial activity was defined as the maximum change in the S. agalactiae population after each dose. An inhibitory sigmoid Emax model was used to evaluate the relationships between the PK/PD index values and antibacterial effects. The duration for which the concentration of the antibiotic (%T) remained above the minimum inhibitory concentration (MIC) was defined as the optimal PK/PD index for assessing antibacterial activity. The values of %T > MIC to reach 0.5-log10CFU/MG, 1-log10 CFU/MG and 2-log10 CFU/MG reductions were 31, 47, and 81%, respectively. When the PK/PD index %T > MIC of cefquinome was >81% in vivo, the density of the Streptococcus agalactiae was reduced by 2-log10. These findings provide a valuable understanding to optimise the dose regimens of cefquinome in the treatment of S. agalactiae infections. Topics: Animals; Anti-Bacterial Agents; Cephalosporins; Female; Humans; Mastitis; Mice; Microbial Sensitivity Tests; Streptococcus agalactiae | 2023 |
In Vivo Pharmacokinetics/Pharmacodynamics of Cefquinome in an Experimental Mouse Model of Staphylococcus Aureus Mastitis following Intramammary Infusion.
Staphylococcus aureus remains the major cause of morbidity of bovine mastitis worldwide leading to massive economic losses. Cefquinome is a fourth generation cephalosporin, which preserves susceptibility and antibacterial activity against S. aureus. This work aims to study the pharmacokinetic (PK) and pharmacodynamic (PD) modeling following intramammary administration of cefquinome against S. aureus mastitis. The mouse model of S. aureus mastitis was developed for the PK/PD experiments. The plasma PK characteristics after intramammary injection of cefquinome at various single doses of 25, 50, 100, 200, 400 μg per gland (both fourth pairs of glands: L4 and R4) were calculated using one-compartment and first-order absorption model. PD study was investigated based on twenty-one intermittent dosing regimens, of which total daily dose ranged from 25 to 4800 μg per mouse and dosage intervals included 8, 12 or 24 h. The sigmoid Emax model of inhibitory effect was employed for PK/PD modeling. The results of PK/PD integration of cefquinome against S. aureus suggested that the percentage of duration that drug concentration exceeded the minimal inhibitory concentration (%T>MIC) and the ratio of area under time-concentration curve over MIC (AUC/MIC) are important indexes to evaluate the antibacterial activity. The PK/PD parameters of %T>MIC and AUC0-24/MIC were 35.98% and 137.43 h to obtain a 1.8 logCFU/gland reduction of bacterial colony counts in vivo, against S. aureus strains with cefquinome MIC of 0.5μg/ml. Topics: Animals; Anti-Bacterial Agents; Area Under Curve; Cattle; Cephalosporins; Disease Models, Animal; Female; Injections; Mastitis; Mice; Microbial Sensitivity Tests; Staphylococcal Infections; Staphylococcus aureus; Treatment Outcome | 2016 |