cefquinome has been researched along with Disease-Models--Animal* in 6 studies
6 other study(ies) available for cefquinome and Disease-Models--Animal
Article | Year |
---|---|
Cefquinome-Loaded Microsphere Formulations in Protection against Pneumonia with Klebsiella pneumonia Infection and Inflammatory Response in Rats.
This study aimed to compare in vivo activity between cefquinome (CEQ)-loaded poly lactic-co-glycolic acid (PLGA) microspheres (CEQ-PLGA-MS) and CEQ injection (CEQ-INJ) against Klebsiella pneumonia in a rat lung infection model.. Forty-eight rats were divided into control group (sham operated without infection and drug treatment), Klebsiella pneumonia model group (KPD + Saline), CEQ-PLGA-MS and CEQ-INJ therapy groups (KPD + CEQ-PLGA-MS and KPD + INJ, respectively). In the KPD + Saline group, rats were infected with Klebsiella pneumonia ATCC 10031. In the KPD + CEQ-PLGA-MS and KPD + INJ groups, infected rats were intravenously injected with 12.5 mg/kg body weight CEQ-PLGA-MS and CEQ-INJ, respectively.. Compared to CEQ-INJ treatment group, CEQ-PLGA-MS treatment further decreased the number of bacteria colonies (decreased to 1.94 lg CFU/g) in lung tissues and the levels of inflammatory cytokine including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-4 (p < 0.05 or p < 0.01) in bronchoalveolar lavage fluid at 48 h. Consistently, a significant decreases of scores of inflammation severity were showed at 48 h in the KPD + CEQ-PLGA-MS treatment group, compared to the KPD + CEQ-INJ treatment group.. Our results reveal that CEQ-PLGA-MS has the better therapeutic effect than CEQ-INJ for Klebsiella pneumonia lung infections in rats. The vehicle of CEQ-PLGA-MS as the promising alternatives to control the lung infections with the important pathogens. Topics: Animals; Anti-Bacterial Agents; Bronchoalveolar Lavage Fluid; Cephalosporins; Cytokines; Disease Models, Animal; Drug Carriers; Drug Compounding; Drug Delivery Systems; Inflammation; Injections, Intravenous; Klebsiella Infections; Klebsiella pneumoniae; Male; Microspheres; Pneumonia, Bacterial; Polylactic Acid-Polyglycolic Acid Copolymer; Rats, Wistar | 2019 |
Cefquinome-loaded microsphere formulations against Klebsiella pneumonia infection during experimental infections.
The aim of this study was to prepare cefquinome-loaded polylactic acid microspheres and to evaluate their in vitro and in vivo characteristics and pharmacodynamics for the therapy of pneumonia in a rat model. Microspheres were prepared using a 0.7 mm two-fluid nozzle spray drier in one step resulting in spherical and smooth microspheres of uniform size (9.8 ± 3.6 μm). The encapsulation efficiency and drug loading of cefquinome were 91.6 ± 2.6% and 18.7 ± 1.2%, respectively. In vitro release of cefquinome from the microspheres was sustained for 36 h. Cefquinome-loaded polylactic acid microspheres as a drug delivery system was successful for clearing experimental Klebsiella pneumonia lung infections. A decrease in inflammatory cells and an inhibition of inflammatory cytokines TNF-α, IL-1β and IL-8 after microspheres treatment was found. Changes in cytokine levels and types are secondary manifestations of drug bactericidal effects. Rats were considered to be microbiologically cured because the bacterial load was less than 100 CFU/g. These results also indicated that the spray-drying method of loading therapeutic drug into polylactic acid microspheres is a straightforward and safe method for lung-targeting therapy in animals. Topics: Animals; Anti-Bacterial Agents; Bacterial Load; Cephalosporins; Disease Models, Animal; Drug Carriers; Drug Compounding; Drug Liberation; Host-Pathogen Interactions; Inflammation Mediators; Interleukin-1beta; Interleukin-8; Klebsiella Infections; Klebsiella pneumoniae; Lung; Male; Microspheres; Particle Size; Pneumonia, Bacterial; Polyesters; Rats, Wistar; Surface Properties; Technology, Pharmaceutical; Time Factors; Tumor Necrosis Factor-alpha | 2018 |
In Vivo Pharmacodynamics of Cefquinome in a Neutropenic Mouse Thigh Model of Streptococcus suis Serotype 2 at Varied Initial Inoculum Sizes.
Streptococcus suis serotype 2 is an emerging zoonotic pathogen and causes severe disease in both pigs and human beings. Cefquinome (CEQ), a fourth-generation cephalosporin, exhibits broad-spectrum activity against Gram-positive bacteria such as S. suis. This study evaluated the in vitro and in vivo antimicrobial activities of CEQ against four strains of S. suis serotype 2 in a murine neutropenic thigh infection model. We investigated the effect of varied inoculum sizes (10(6) to 10(8) CFU/thigh) on the pharmacokinetic (PK)/pharmacodynamic (PD) indices and magnitudes of a particular PK/PD index or dose required for efficacy. Dose fractionation studies included total CEQ doses ranging from 0.625 to 640 mg/kg/24 h. Data were analyzed via a maximum effect (Emax) model using nonlinear regression. The PK/PD studies demonstrated that the percentage of time that serum drug levels were above the MIC of free drug (%ƒT>MIC) in a 24-h dosing interval was the primary index driving the efficacy of both inoculum sizes (R(2) = 91% and R(2) = 63%). CEQ doses of 2.5 and 40 mg/kg body weight produced prolonged postantibiotic effects (PAEs) of 2.45 to 8.55 h. Inoculum sizes had a significant influence on CEQ efficacy. Compared to the CEQ exposure and dosages in tests using standard inocula, a 4-fold dose (P = 0.006) and a 2-fold exposure time (P = 0.01) were required for a 1-log kill using large inocula of 10(8) CFU/thigh. Topics: Animals; Anti-Bacterial Agents; Cephalosporins; Disease Models, Animal; Dose-Response Relationship, Drug; Female; Mice, Inbred ICR; Microbial Sensitivity Tests; Neutropenia; Streptococcal Infections; Streptococcus suis; Thigh | 2016 |
In Vivo Pharmacokinetics/Pharmacodynamics of Cefquinome in an Experimental Mouse Model of Staphylococcus Aureus Mastitis following Intramammary Infusion.
Staphylococcus aureus remains the major cause of morbidity of bovine mastitis worldwide leading to massive economic losses. Cefquinome is a fourth generation cephalosporin, which preserves susceptibility and antibacterial activity against S. aureus. This work aims to study the pharmacokinetic (PK) and pharmacodynamic (PD) modeling following intramammary administration of cefquinome against S. aureus mastitis. The mouse model of S. aureus mastitis was developed for the PK/PD experiments. The plasma PK characteristics after intramammary injection of cefquinome at various single doses of 25, 50, 100, 200, 400 μg per gland (both fourth pairs of glands: L4 and R4) were calculated using one-compartment and first-order absorption model. PD study was investigated based on twenty-one intermittent dosing regimens, of which total daily dose ranged from 25 to 4800 μg per mouse and dosage intervals included 8, 12 or 24 h. The sigmoid Emax model of inhibitory effect was employed for PK/PD modeling. The results of PK/PD integration of cefquinome against S. aureus suggested that the percentage of duration that drug concentration exceeded the minimal inhibitory concentration (%T>MIC) and the ratio of area under time-concentration curve over MIC (AUC/MIC) are important indexes to evaluate the antibacterial activity. The PK/PD parameters of %T>MIC and AUC0-24/MIC were 35.98% and 137.43 h to obtain a 1.8 logCFU/gland reduction of bacterial colony counts in vivo, against S. aureus strains with cefquinome MIC of 0.5μg/ml. Topics: Animals; Anti-Bacterial Agents; Area Under Curve; Cattle; Cephalosporins; Disease Models, Animal; Female; Injections; Mastitis; Mice; Microbial Sensitivity Tests; Staphylococcal Infections; Staphylococcus aureus; Treatment Outcome | 2016 |
Pharmacodynamics of cefquinome in a neutropenic mouse thigh model of Staphylococcus aureus infection.
Cefquinome is a cephalosporin with broad-spectrum antibacterial activity, including activity against Staphylococcus aureus. The objective of our study was to examine the in vivo activity of cefquinome against S. aureus strains by using a neutropenic mouse thigh infection model. Cefquinome kinetics and protein binding in infected neutropenic mice were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS). In vivo postantibiotic effects (PAEs) were determined after a dose of 100 mg/kg of body weight in mice infected with S. aureus strain ATCC 29213. The animals were treated by subcutaneous injection of cefquinome at doses of 2.5 to 320 mg/kg of body weight per day divided into 1, 2, 3, 6, or 12 doses over 24 h. Cefquinome exhibited time-dependent killing and produced in vivo PAEs at 2.9 h. The percentage of time that serum concentrations were above the MIC (%T>MIC) was the pharmacokinetic-pharmacodynamic (PK-PD) index that best described the efficacy of cefquinome. Subsequently, we employed a similar dosing strategy by using increasing total cefquinome doses that increased 4-fold and were administered every 4 h to treat animals infected with six additional S. aureus isolates. A sigmoid maximum effect (Emax) model was used to estimate the magnitudes of the ratios of the %T that the free-drug serum concentration exceeded the MIC (%T>fMIC) associated with net bacterial stasis, a 0.5-log10 CFU reduction from baseline, and a 1-log10 CFU reduction from baseline; the respective values were 30.28 to 36.84%, 34.38 to 46.70%, and 43.50 to 54.01%. The clear PAEs and potent bactericidal activity make cefquinome an attractive option for the treatment of infections caused by S. aureus. Topics: Animals; Anti-Bacterial Agents; Area Under Curve; Cephalosporins; Disease Models, Animal; Female; Mice; Mice, Inbred ICR; Microbial Sensitivity Tests; Neutropenia; Specific Pathogen-Free Organisms; Staphylococcal Infections; Staphylococcus aureus; Tandem Mass Spectrometry; Thigh | 2014 |
In vivo evaluation of mutant selection window of cefquinome against Escherichia coli in piglet tissue-cage model.
The resistance of cephalosporins is significantly serious in veterinary clinic. In order to inhibit the bacterial resistance production, the mutant selection window (MSW) hypothesis with Escherichia coli (E. coli) ATCC 25922 exposed to cefquinome in an animal tissue-cage model was investigated.. Localized infection with E. coli was established in piglets, and the infected animals were administrated intramuscularly with various doses and intervals of cefquinome to provide antibiotic concentrations below the MIC99, between the MIC99 and the mutant prevention concentration (MPC), and above the MPC. E. coli lost susceptibility when drug concentrations fluctuated between the lower and upper boundaries of the window, which defined in vitro as the MIC99 (0.06 μg/mL) and the MPC (0.16 μg/mL) respectively. For PK/PD parameters, there were no mutant selection enrichment when T>MIC99 was ≤ 25% or T>MPC was ≥ 50% of administration interval. When T>MIC99 was > 25% and T>MPC was <50% of administration interval, resistance selection was observed. When AUC24 h/MIC99 and AUC24 h/MPC were considered, the mutant selection window extended from 32.84 h to 125.64 h and from 12.83 h to 49.09 h, respectively.. These findings demonstrate that the MSW exists in vivo for time-dependent antimicrobial agents, and its boundaries fit well with those determined in vitro. Maintenance of antimicrobial concentrations above the MPC for > 50% of administration interval is a straightforward way to restrict the acquisition of resistance in this tissue cage model. This situation was achieved with daily intramuscular doses of 1 mg cefquinome/kg body weight. Topics: Animals; Anti-Bacterial Agents; Cephalosporins; Diffusion Chambers, Culture; Disease Models, Animal; Drug Resistance, Bacterial; Escherichia coli; Escherichia coli Infections; Microbial Sensitivity Tests; Mutation; Swine | 2014 |