cediranib has been researched along with Melanoma* in 1 studies
1 other study(ies) available for cediranib and Melanoma
Article | Year |
---|---|
Synthesis and Biological Evaluation of N-[2-(4-Hydroxyphenylamino)-pyridin-3-yl]-4-methoxy-benzenesulfonamide (ABT-751) Tricyclic Analogues as Antimitotic and Antivascular Agents with Potent in Vivo Antitumor Activity.
Benzopyridothiadiazepine (2a) and benzopyridooxathiazepine (2b) were modified to produce tricyclic quinazolinone 15-18 or benzothiadiazine 26-27 derivatives. These compounds were evaluated in cytotoxicity and tubulin inhibition assays and led to potent inhibitors of tubulin polymerization. N-[2(4-Methoxyphenyl)ethyl]-1,2-dihydro-pyrimidino[2,1-b]quinazolin-6-one (16a) exhibited the best in vitro cytotoxic activity (GI50 10-66.9 nM) against the NCI 60 human tumor cell line and significant potency against tubulin assembly (IC50 0.812 μM). In mechanism studies, 16a was shown to block cell cycle in G2/M phase and to disrupt microtubule formation and displayed good antivascular properties as inhibition of cell migration, invasion, and endothelial tube formation. Compound 16a was evaluated in C57BL/6 mouse melanoma B16F10 xenograft model to validate its antitumor activity, in comparison with reference ABT-751 (1). Compound 16a displayed strong in vivo antitumor and antivascular activities at a dose of 5 mg/kg without obvious toxicity, whereas 1 needed a 10-fold higher concentration to reach similar effects. Topics: Angiogenesis Inhibitors; Animals; Antimitotic Agents; Benzenesulfonamides; Benzothiadiazines; Cell Line, Tumor; Humans; Male; Melanoma; Mice; Mice, Inbred C57BL; Quinazolinones; Structure-Activity Relationship; Sulfonamides; Tubulin; Tubulin Modulators | 2016 |