cdw17-antigen and Leukemia--Myeloid

cdw17-antigen has been researched along with Leukemia--Myeloid* in 2 studies

Other Studies

2 other study(ies) available for cdw17-antigen and Leukemia--Myeloid

ArticleYear
Influence of ceramide metabolism on P-glycoprotein function in immature acute myeloid leukemia KG1a cells.
    Molecular pharmacology, 2002, Volume: 62, Issue:2

    Previous studies have emphasized the role of glucosylceramide (Glu-Cer) synthase in multidrug resistance (MDR) regulation. However, the mechanism by which the inhibition of this enzyme results in increased drug retention and cytotoxicity remains unclear. In this study, we investigated the respective role of ceramide (Cer) accumulation and Glu-Cer derivatives depletion in MDR reversal effect of 1-phenyl-2-decanoylamino-3-morpholino-1-propanolol (PDMP), a Glu-Cer synthase inhibitor. We show here that treatment with PDMP resulted in increased rhodamine 123 (Rh123) retention and potent chemosensitization of P-glycoprotein (P-gp)-expressing cells, including KG1a cells, KG1a/200 cells, K562/138 cells, and K562/mdr-1 cells. Metabolic studies revealed that PDMP induced not only time-dependent Cer accumulation but also reduction of all glycosylated forms of Cer, including Glu-Cer, lactosylceramide (Lac-Cer), monosialo ganglioside (GM3) and disialo ganglioside (GD3). The influence of these metabolites on P-gp function was investigated by measuring Rh123 retention in PDMP-treated cells. P-gp function was found to be stimulated only by the addition of gangliosides in all resistant cell lines, whereas Glu-Cer, Lac-Cer, and Cer had no effect. Moreover, in KG1a/200 cells, GD3 and, to a lesser extent, GM3 were found to phosphorylate P-gp on serine residues. Altogether, these results suggest that, at least in leukemic cells, gangliosides depletion accounts for PDMP-mediated MDR reversal effect, and that gangliosides are important P-gp regulators perhaps through their capacity to modulate P-gp phosphorylation.

    Topics: Acute Disease; Antigens, CD; Antineoplastic Agents; ATP Binding Cassette Transporter, Subfamily B, Member 1; Ceramides; Daunorubicin; Drug Interactions; Gangliosides; Glucosylceramides; Humans; Lactosylceramides; Leukemia, Myeloid; Morpholines; Phosphorylation; Sphingosine; Tumor Cells, Cultured; Vincristine

2002
Glycolipid antigens of human polymorphonuclear neutrophils and the inducible HL-60 myeloid leukemia line.
    Journal of immunology (Baltimore, Md. : 1950), 1985, Volume: 134, Issue:4

    Glycolipid and cell surface carbohydrate antigens of human polymorphonuclear neutrophils (PMN) and of HL-60 myeloid leukemia cells were analyzed with a panel of defined, monoclonal anti-carbohydrate antibodies. Antigenicities of intact PMN, HL-60, and retinoic acid-induced HL-60 (r.a.-HL-60) were studied by flow cytofluorometry. These three cell populations displayed quantitative differences, some of which were induction dependent, in their expression of lactosyl, N-acetyllactosaminyl, Y-hapten (Fuc alpha 1----2Gal beta 1----4(Fuc alpha 1----3)GlcNAc beta 1----R), and sialosyl-X-hapten (SA alpha 2----3Gal beta 1----4(Fuc alpha 1----3)GlcNAc beta 1----R) specificities. Structures reactive with antibodies specific for long-chain mono-, and di- or tri- alpha 1----3 fucosylated lacto-series glycolipids were also detected. Glycosphingolipids purified from organic extracts of these cells were analyzed to seek information concerning the chemical basis for these surface antigenic differences, to assess the structural and antigenic diversity of PMN and HL-60 glycolipids, and to quantitate chemically and antigenically prominent glycolipids. Binding of monoclonal antibodies to thin-layer chromatograms demonstrated that each of the specificities on intact cells was carried by one or more distinct glycolipids. The abundance of immunoreactive glycolipids in the extracts paralleled the relative staining intensities of the intact cell populations. Several "cryptic" glycolipid antigens, including alpha 2----6 sialosylated structures enriched five- to 10-fold in PMN extracts, were not detected on intact cells. Lactosylceramide accounted for two-thirds of the approximately 1.5 X 10(9) glycolipid molecules contained in each PMN. The remaining glycolipid antigens appeared to include structurally diverse fucolipids, fucogangliosides, and neutral and sialosylated glycolipids with Gal beta 1----4GlcNAc beta 1----R terminal core structure. The abundance, diversity, and induction-dependent expression of these structures suggest that they may participate in PMN maturation and function.

    Topics: Amino Sugars; Antibodies, Monoclonal; Antibody Specificity; Antigens, CD; Antigens, Surface; Binding Sites, Antibody; Cell Line; Cell Transformation, Neoplastic; Gangliosides; Glycolipids; Glycosphingolipids; Haptens; Humans; Lactosylceramides; Leukemia, Myeloid; Neutrophils; Oligosaccharides

1985