cdw17-antigen has been researched along with Diabetes-Mellitus* in 2 studies
2 review(s) available for cdw17-antigen and Diabetes-Mellitus
Article | Year |
---|---|
Glycosphingolipids in Diabetes, Oxidative Stress, and Cardiovascular Disease: Prevention in Experimental Animal Models.
Diabetes contributes to about 30% morbidity and mortality world-wide and has tidal wave increases in several countries in Asia. Diabetes is a multi-factorial disease compounded by inflammation, dyslipidemia, atherosclerosis, and is sometimes accompanied with gains in body weight. Sphingolipid pathways that interplay in the enhancement of the pathology of this disease may be potential therapeutic targets. Thus, the application of advanced sphingolipidomics may help predict the progression of this disease and therapeutic outcomes in man. Pre-clinical studies using various experimental animal models of diabetes provide valuable information on the role of sphingolipid signaling networks in diabetes and the efficacy of drugs to determine the translatability of innovative discoveries to man. In this review, we discuss three major concepts regarding sphingolipids and diabetes. First, we discuss a possible involvement of a monosialodihexosylceramide (GM3) in insulin-insulin receptor interactions. Second, a potential role for ceramide (Cer) and lactosylceramide (LacCer) in apoptosis and mitochondrial dysfunction is proposed. Third, a larger role of LacCer in antioxidant status and inflammation is discussed. We also discuss how inhibitors of glycosphingolipid synthesis can ameliorate diabetes in experimental animal models. Topics: Animals; Cardiovascular Diseases; Diabetes Mellitus; Glycosphingolipids; Inflammation; Lactosylceramides; Models, Animal; Oxidative Stress; Sphingolipids | 2022 |
Convergence: Lactosylceramide-Centric Signaling Pathways Induce Inflammation, Oxidative Stress, and Other Phenotypic Outcomes.
Lactosylceramide (LacCer), also known as CD17/CDw17, is a member of a large family of small molecular weight compounds known as glycosphingolipids. It plays a pivotal role in the biosynthesis of glycosphingolipids, primarily by way of serving as a precursor to the majority of its higher homolog sub-families such as gangliosides, sulfatides, fucosylated-glycosphingolipids and complex neutral glycosphingolipids-some of which confer "second-messenger" and receptor functions. LacCer is an integral component of the "lipid rafts," serving as a conduit to transduce external stimuli into multiple phenotypes, which may contribute to mortality and morbidity in man and in mouse models of human disease. LacCer is synthesized by the action of LacCer synthase (β-1,4 galactosyltransferase), which transfers galactose from uridine diphosphate galactose (UDP-galactose) to glucosylceramide (GlcCer). The convergence of multiple physiologically relevant external stimuli/agonists-platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), stress, cigarette smoke/nicotine, tumor necrosis factor-α (TNF-α), and in particular, oxidized low-density lipoprotein (ox-LDL)-on β-1,4 galactosyltransferase results in its phosphorylation or activation, via a "turn-key" reaction, generating LacCer. This newly synthesized LacCer activates NADPH (nicotinamide adenine dihydrogen phosphate) oxidase to generate reactive oxygen species (ROS) and a highly "oxidative stress" environment, which trigger a cascade of signaling molecules and pathways and initiate diverse phenotypes like inflammation and atherosclerosis. For instance, LacCer activates an enzyme, cytosolic phospholipase A2 (cPLA2), which cleaves arachidonic acid from phosphatidylcholine. In turn, arachidonic acid serves as a precursor to eicosanoids and prostaglandin, which transduce a cascade of reactions leading to inflammation-a major phenotype underscoring the initiation and progression of several debilitating diseases such as atherosclerosis and cancer. Our aim here is to present an updated account of studies made in the field of LacCer metabolism and signaling using multiple animal models of human disease, human tissue, and cell-based studies. These advancements have led us to propose that previously unrelated phenotypes converge in a LacCer-centric manner. This LacCer synthase/LacCer-induced "oxidative stress" environment contributes to inflammation, atherosclerosis, skin conditions, hair greying, cardiovascu Topics: Animals; Antigens, CD; Atherosclerosis; Cardiovascular Diseases; Cytokines; Diabetes Mellitus; Humans; Inflammation; Lactosylceramides; Mice; Oxidative Stress; Signal Transduction; Skin Diseases | 2021 |