cdw17-antigen has been researched along with Carcinoma--Lewis-Lung* in 2 studies
2 other study(ies) available for cdw17-antigen and Carcinoma--Lewis-Lung
Article | Year |
---|---|
Sialylation and sulfation of lactosylceramide distinctly regulate anchorage-independent growth, apoptosis, and gene expression in 3LL Lewis lung carcinoma cells.
To investigate the significance of sialylation and sulfation of lactosylceramide in transformed cells, we established ganglioside GM3- and lactosylsulfatide (SM3)-reconstituted cells by transfecting cDNAs of GM3 synthase and cerebroside sulfotransferase into the J5 subclone of 3LL Lewis lung carcinoma cells. The J5 clone was selected for the transfection of these genes because it lacks GM3 and SM3 but accumulates lactosylceramide. The anchorage-dependent growth of both GM3- and SM3-reconstituted cells was similar. However, anchorage-independent growth (as measured by colony-forming ability in soft agar) of the SM3- reconstituted cells was almost completely lost, which supports our previous observation showing the suppression of tumorigenic potential in vivo and beta1 integrin gene expression induced by the introduction of cerebroside sulfotransferase gene (Kabayama et al. [2001] J. Biol. Chem., 276, 26777-26783). The GM3-reconstituted cells formed a significantly higher number of colonies in soft agar compared to mock-transfected cells and began to proliferate and become resistant to apoptosis when serum was depleted, indicating that endogenous GM3 is essential for maintaining these fundamental properties of malignant cells. We also found that serum-induced ERK1/2 activation was suppressed in the GM3-reconstituted cells, suggesting that anchorage-independent cell cycle initiation by endogenous GM3 is elicited through pathway(s) independent of ERK1/2 activation. The selective down-regulation of platelet-derived growth factor (PDGF)-dependent ERK1/2 activation in the GM3-reconstituted cells was due to the substantial decreases of PDGF alpha receptor mRNA and protein, but in the SM3-reconstituted cells PDGF alpha receptor expression was similar to mock cells. Thus, endogenously produced GM3 and SM3 differentially and distinctly regulate tumor-progression ability, that is, GM3 leads the transformed phenotype of J5 cells to promotion and SM3 to abrogation. Topics: Animals; Antigens, CD; Apoptosis; Carcinoma, Lewis Lung; Cell Adhesion; Cell Division; Cell Transformation, Neoplastic; Enzyme Activation; Gene Expression Regulation, Neoplastic; Immunoglobulin Gm Allotypes; Integrin beta1; Lactosylceramides; Mice; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Mitogen-Activated Protein Kinases; N-Acetylneuraminic Acid; Platelet-Derived Growth Factor; Receptor, Platelet-Derived Growth Factor alpha; Sulfates; Tumor Cells, Cultured | 2003 |
Suppression of integrin expression and tumorigenicity by sulfation of lactosylceramide in 3LL Lewis lung carcinoma cells.
To investigate the cellular functions of sulfated glycosphingolipids, we introduced the cerebroside sulfotransferase (CST) gene into J5 cells, a subclone of 3LL Lewis lung carcinoma cells. The J5 cells lack acidic glycosphingolipids but accumulate their common biosynthetic precursor, lactosylceramide. We established the stable CST transfectants, J5/CST-1 and J5/CST-2 clones, highly expressing sulfated lactosylceramide (SM3). Both clones exhibited more spherical morphology in comparison to mock transfectant, and their adhesiveness to fibronectin and laminin was significantly lower. The loss of cell-substratum interactions in these SM3-expressing cells could be attributed to decreased expression of integrins (alpha(5), alpha(6), and beta(1)) on the cell surface and their whole cellular levels. However, the levels of H-2K(b) and H-2D(b) antigens remained unchanged. Reverse transcriptase-polymerase chain reaction and Northern blot analyses for these integrins exhibited significant decrease of beta(1) gene expression in J5/CST-1 and 2, but there was no change in the levels of alpha(5) and alpha(6) transcripts. Deglycosylation by endoglycosidase H treatment clearly demonstrated that the precursor form of beta(1) integrin, possessing high mannose oligosaccharide chains, was preferentially decreased in the CST transfectants. These results demonstrate that endogenous SM3 negatively regulates beta(1) integrin expression at the transcriptional level, and the decrease of alpha integrin proteins in the CST transfectants was due to the post-transcriptional modification. We suggest the putative importance of the intracellular pre-beta(1) integrin pool for normal integrin maturation and subsequent function. Although the rates of cell proliferation in vitro for mock and CST transfectants were similar, tumorigenicity of J5/CST-1 and -2 cells inoculated into syngeneic C57/BL6 mice was greatly decreased or even absent. This was probably due to global loss of the efficient cell-matrix interactions, which are essential for the development of malignant tumors in vivo. Thus, we showed the evidence that cellular SM3 negatively regulates the cell-substratum interaction, resulting in the loss of tumorigenicity. Topics: Animals; Antigens, CD; Base Sequence; Carcinoma, Lewis Lung; Cell Adhesion; Cell Division; DNA Primers; Integrins; Lactosylceramides; Mice; Reverse Transcriptase Polymerase Chain Reaction; Sulfuric Acids; Transfection; Tumor Cells, Cultured | 2001 |