ccg-203971 has been researched along with Disease-Models--Animal* in 2 studies
2 other study(ies) available for ccg-203971 and Disease-Models--Animal
Article | Year |
---|---|
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection. Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection | 2020 |
Pharmacokinetic optimitzation of CCG-203971: Novel inhibitors of the Rho/MRTF/SRF transcriptional pathway as potential antifibrotic therapeutics for systemic scleroderma.
We recently reported the development of a novel inhibitor of Rho-mediated gene transcription (1, CCG-203971) that is efficacious in multiple animal models of acute fibrosis, including scleroderma, when given intraperitoneally. The modest in vivo potency and poor pharmacokinetics (PK) of this lead, however, make it unsuitable for long term efficacy studies. We therefore undertook a systematic medicinal chemistry effort to improve both the metabolic stability and the solubility of 1, resulting in the identification of two analogs achieving over 10-fold increases in plasma exposures in mice. We subsequently showed that one of these analogs (8f, CCG-232601) could inhibit the development of bleomycin-induced dermal fibrosis in mice when administered orally at 50mg/kg, an effect that was comparable to what we had observed earlier with 1 at a 4-fold higher IP dose. Topics: Administration, Oral; Animals; Disease Models, Animal; Fibrosis; HEK293 Cells; Humans; Mice; Nipecotic Acids; Rho Factor; Scleroderma, Systemic; Serum Response Element; Skin; Trans-Activators; Transcriptional Activation | 2017 |