cc-292 has been researched along with Disease-Models--Animal* in 5 studies
5 other study(ies) available for cc-292 and Disease-Models--Animal
Article | Year |
---|---|
Development of novel hydrazidoarylaminopyrimidine-based BTK/FLT3 dual inhibitors with potent in vivo anti-hematological malignancies effects.
Topics: Acrylamides; Animals; Apoptosis; Disease Models, Animal; fms-Like Tyrosine Kinase 3; Hematologic Neoplasms; Humans | 2023 |
Prevention of Bone Destruction by Mechanical Loading Is Not Enhanced by the Bruton's Tyrosine Kinase Inhibitor CC-292 in Myeloma Bone Disease.
Limiting bone resorption and regenerating bone tissue are treatment goals in myeloma bone disease (MMBD). Physical stimuli such as mechanical loading prevent bone destruction and enhance bone mass in the MOPC315.BM.Luc model of MMBD. It is unknown whether treatment with the Bruton's tyrosine kinase inhibitor CC-292 (spebrutinib), which regulates osteoclast differentiation and function, augments the anabolic effect of mechanical loading. CC-292 was administered alone and in combination with axial compressive tibial loading in the MOPC315.BM.Luc model for three weeks. However, neither CC-292 alone nor its use in combination with mechanical loading was more effective in reducing osteolytic bone disease or rescuing bone mass than mechanical stimuli alone, as evidenced by microcomputed tomography (microCT) and histomorphometric analysis. Further studies are needed to investigate novel anti-myeloma and anti-resorptive strategies in combination with physical stimuli to improve treatment of MMBD. Topics: Acrylamides; Agammaglobulinaemia Tyrosine Kinase; Animals; Bone Diseases; Disease Models, Animal; Humans; Mice; Multiple Myeloma; Osteolysis; Protein Kinase Inhibitors; Pyrimidines; Stress, Mechanical; X-Ray Microtomography | 2021 |
Synthesis and biological activity of thieno[3,2-d]pyrimidines as potent JAK3 inhibitors for the treatment of idiopathic pulmonary fibrosis.
Idiopathic pulmonary fibrosis (IPF) is a serious and fatal lung disease, with a median survival of only 3-5 years from diagnosis. Janus kinase 3 (JAK3) has a well-established role in the pathogenesis of various autoimmune diseases, including rheumatoid arthritis (RA) and autoimmune-related pulmonary fibrosis. In this study, through the use of a conformationally-constrained design strategy, a series of thieno[3,2-d]pyrimidines were synthesized as potent JAK3 inhibitors for the treatment of IPF. Among them, the most potent JAK3 inhibitor, namely 8e (IC Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Disease Models, Animal; Dose-Response Relationship, Drug; Epithelial Cells; Female; Humans; Idiopathic Pulmonary Fibrosis; Janus Kinase 3; Mice; Mice, Inbred C57BL; Molecular Docking Simulation; Molecular Structure; Protein Kinase Inhibitors; Pyrimidines; Structure-Activity Relationship | 2020 |
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection. Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection | 2020 |
Selective BTK inhibition improves bendamustine therapy response and normalizes immune effector functions in chronic lymphocytic leukemia.
The Bruton's tyrosine kinase (BTK) inhibitor ibrutinib has been shown to be highly effective in patients with chronic lymphocytic leukemia (CLL) and is approved for CLL treatment. Unfortunately, resistance and intolerance to ibrutinib has been observed in several studies, opening the door for more specific BTK inhibitors. CC-292 (spebrutinib) is a BTK inhibitor with increased specificity for BTK and less inhibition of other kinases. Our in vitro studies showed that CC-292 potently inhibited B-cell receptor signaling, activation, proliferation and chemotaxis of CLL cells. In in vivo studies using the adoptive transfer TCL1 mouse model of CLL, CC-292 reduced tumor load and normalized tumor-associated expansion of T cells and monocytes, while not affecting T cell function. Importantly, the combination of CC-292 and bendamustine impaired CLL cell proliferation in vivo and enhanced the control of CLL progression. Our results demonstrate that CC-292 is a specific BTK inhibitor with promising performance in combination with bendamustine in CLL. Further clinical trials are warranted to investigate the therapeutic efficacy of this combination regimen. Topics: Acrylamides; Adult; Agammaglobulinaemia Tyrosine Kinase; Aged; Animals; Antineoplastic Combined Chemotherapy Protocols; Bendamustine Hydrochloride; Bone Marrow; Disease Models, Animal; Drug Screening Assays, Antitumor; Drug Synergism; Female; Humans; Leukemia, Lymphocytic, Chronic, B-Cell; Male; Mice; Mice, Inbred C57BL; Mice, Transgenic; Middle Aged; Primary Cell Culture; Protein Kinase Inhibitors; Proto-Oncogene Proteins; Pyrimidines; Tumor Cells, Cultured | 2019 |