cathepsin-g has been researched along with Tuberculosis--Pulmonary* in 2 studies
2 other study(ies) available for cathepsin-g and Tuberculosis--Pulmonary
Article | Year |
---|---|
Cathepsin G and neutrophil elastase contribute to lung-protective immunity against mycobacterial infections in mice.
The neutrophil serine proteases cathepsin G (CG) and neutrophil elastase (NE) are involved in immune-regulatory processes and exert antibacterial activity against various pathogens. To date, their role and their therapeutic potential in pulmonary host defense against mycobacterial infections are poorly defined. In this work, we studied the roles of CG and NE in the pulmonary resistance against Mycobacterium bovis bacillus Calmette-Guérin (BCG). CG-deficient mice and even more pronounced CG/NE-deficient mice showed significantly impaired pathogen elimination to infection with M. bovis BCG in comparison to wild-type mice. Moreover, granuloma formation was more pronounced in M. bovis BCG-infected CG/NE-deficient mice in comparison to CG-deficient and wild-type mice. A close examination of professional phagocyte subsets revealed that exclusively neutrophils shuttled CG and NE into the bronchoalveolar space of M. bovis BCG-infected mice. Accordingly, chimeric wild-type mice with a CG/NE-deficient hematopoietic system displayed significantly increased lung bacterial loads in response to M. bovis BCG infection. Therapeutically applied human CG/NE encapsulated in liposomes colocalized with mycobacteria in alveolar macrophages, as assessed by laser scanning and electron microscopy. Importantly, therapy with CG/NE-loaded liposomes significantly reduced mycobacterial loads in the lungs of mice. Together, neutrophil-derived CG and NE critically contribute to deceleration of pathogen replication during the early phase of antimycobacterial responses. In addition, to our knowledge, we show for the first time that liposomal encapsulated CG/NE exhibit therapeutic potential against pulmonary mycobacterial infections. These findings may be relevant for novel adjuvant approaches in the treatment of tuberculosis in humans. Topics: Animals; Cathepsin G; Female; Humans; Leukocyte Elastase; Macrophages, Alveolar; Mice; Mice, Mutant Strains; Mycobacterium bovis; Tuberculosis, Pulmonary | 2012 |
Serine protease activity contributes to control of Mycobacterium tuberculosis in hypoxic lung granulomas in mice.
The hallmark of human Mycobacterium tuberculosis infection is the presence of lung granulomas. Lung granulomas can have different phenotypes, with caseous necrosis and hypoxia present within these structures during active tuberculosis. Production of NO by the inducible host enzyme NOS2 is a key antimycobacterial defense mechanism that requires oxygen as a substrate; it is therefore likely to perform inefficiently in hypoxic regions of granulomas in which M. tuberculosis persists. Here we have used Nos2-/- mice to investigate host-protective mechanisms within hypoxic granulomas and identified a role for host serine proteases in hypoxic granulomas in determining outcome of disease. Nos2-/- mice reproduced human-like granulomas in the lung when infected with M. tuberculosis in the ear dermis. The granulomas were hypoxic and contained large amounts of the serine protease cathepsin G and clade B serine protease inhibitors (serpins). Extrinsic inhibition of serine protease activity in vivo resulted in distorted granuloma structure, extensive hypoxia, and increased bacterial growth in this model. These data suggest that serine protease activity acts as a protective mechanism within hypoxic regions of lung granulomas and present a potential new strategy for the treatment of tuberculosis. Topics: Animals; Cathepsin G; Granuloma; Hypoxia; Lung; Mice; Mice, Inbred C57BL; Mice, Knockout; Mycobacterium tuberculosis; Necrosis; Pulmonary Fibrosis; Serine Proteases; Tuberculosis, Pulmonary | 2010 |