cathepsin-g has been researched along with Pulmonary-Disease--Chronic-Obstructive* in 6 studies
6 other study(ies) available for cathepsin-g and Pulmonary-Disease--Chronic-Obstructive
Article | Year |
---|---|
Monitoring Neutrophil Elastase and Cathepsin G Activity in Human Sputum Samples.
Proteases are regulators of countless physiological processes and the precise investigation of their activities remains an intriguing biomedical challenge. Among the ~600 proteases encoded by the human genome, neutrophil serine proteases (NSPs) are thoroughly investigated for their involvement in the onset and progression of inflammatory conditions including respiratory diseases. Uniquely, secreted NSPs not only diffuse within extracellular fluids but also localize to plasma membranes. During neutrophil extracellular trap (NETs) formation, NSPs become an integral part of the secreted chromatin. Such complex behavior renders the understanding of NSPs pathophysiology a challenging task. Here, detailed protocols are shown to visualize, quantify and discriminate free and membrane-bound neutrophil elastase (NE) and cathepsin G (CG) activities in sputum samples. NE and CG are NSPs whose activities have pleiotropic roles in the pathogenesis of cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD): they promote tissue remodeling, regulate downstream immune responses and correlate with lung disease severity. The protocols show how to separate fluid and cellular fraction, as well as the isolation of neutrophils from human sputum for enzymatic activity quantification via small-molecule Förster resonance energy transfer-based (FRET) reporters. To gather specific insights into the relative role of NE and CG activities, a FRET readout can be measured by different technologies: i) in vitro plate reader measurements allow for high-throughput and bulk detection of protease activity; ii) confocal microscopy spatiotemporally resolves membrane-bound activity at the cell surface; iii) small-molecule FRET flow cytometry enables for the rapid evaluation of anti-inflammatory treatments via single-cell protease activity quantification and phenotyping. The implementation of such methods opens the doors to explore NSPs pathobiology and their potential as biomarkers of disease severity for CF and COPD. Given their standardization potential, their robust readout and simplicity of transfer, the described techniques are immediately shareable for implementation across research and diagnostic laboratories. Topics: Cathepsin G; Cystic Fibrosis; Humans; Leukocyte Elastase; Neutrophils; Pulmonary Disease, Chronic Obstructive; Serine Proteases; Sputum | 2021 |
Lung tissue destruction by proteinase 3 and cathepsin G mediated elastin degradation is elevated in chronic obstructive pulmonary disease.
Chronic obstructive pulmonary disease (COPD) is characterized by high levels of protease activity leading to degradation of elastin followed by loss of elasticity of the lung and the development of emphysema. Elastin is an essential structural component of the lung parenchyma to support the expansion and recoil of the alveoli during breathing. The lung extracellular matrix is vulnerable to pathological structural changes upon upregulation of serine proteases, including cathepsin G (CG) and proteinase 3 (PR3). In this study, we explored the diagnostic features of elastin neo-epitopes generated by CG and PR3. Two novel competitive enzyme-linked immunosorbent assays (ELISA) measuring CG and PR3 generated elastin fragments (EL-CG and ELP-3 respectively) were developed for assessment in serum. Both assays were technically robust and biologically validated in serum from patients with COPD. Serological levels of both elastin fragments were significantly elevated in patients with COPD compared to healthy controls. These data suggest that EL-CG and ELP-3 may serve as plausible biologic markers of destructive changes in COPD. Topics: Aged; Cathepsin G; Elastin; Enzyme-Linked Immunosorbent Assay; Extracellular Matrix; Female; Healthy Volunteers; Humans; Lung; Male; Myeloblastin; Pulmonary Disease, Chronic Obstructive | 2018 |
N-Arylacyl O-sulfonated aminoglycosides as novel inhibitors of human neutrophil elastase, cathepsin G and proteinase 3.
The balance between neutrophil serine proteases (NSPs) and protease inhibitors (PIs) in the lung is a critical determinant for a number of chronic inflammatory lung diseases such as chronic obstructive pulmonary disease, cystic fibrosis and acute lung injury. During activation at inflammatory sites, excessive release of NSPs such as human neutrophil elastase (HNE), proteinase 3 (Pr3) and cathepsin G (CatG), leads to destruction of the lung matrix and continued propagation of acute inflammation. Under normal conditions, PIs counteract these effects by inactivating NSPs; however, in chronic inflammatory lung diseases, there are insufficient amounts of PIs to mitigate damage. Therapeutic strategies are needed to modulate excessive NSP activity for the clinical management of chronic inflammatory lung diseases. In the study reported here, a panel of N-arylacyl O-sulfonated aminoglycosides was screened to identify inhibitors of the NSPs. Dose-dependent inhibitors for each individual serine protease were identified. Select compounds were found to inhibit multiple NSPs, including one lead structure that is shown to inhibit all three NSPs. Two lead compounds identified during the screen for each individual NSP were further characterized as partial mixed inhibitors of CatG. Concentration-dependent inhibition of protease-mediated detachment of lung epithelial cells is demonstrated. Topics: Acute Lung Injury; Aminoglycosides; Cathepsin G; Cystic Fibrosis; Humans; Inflammation; Leukocyte Elastase; Myeloblastin; Proteinase Inhibitory Proteins, Secretory; Pulmonary Disease, Chronic Obstructive | 2016 |
Cathepsin G degradation of phospholipid transfer protein (PLTP) augments pulmonary inflammation.
Phospholipid transfer protein (PLTP) regulates phospholipid transport in the circulation and is highly expressed within the lung epithelium, where it is secreted into the alveolar space. Since PLTP expression is increased in chronic obstructive pulmonary disease (COPD), this study aimed to determine how PLTP affects lung signaling and inflammation. Despite its increased expression, PLTP activity decreased by 80% in COPD bronchoalveolar lavage fluid (BALF) due to serine protease cleavage, primarily by cathepsin G. Likewise, PLTP BALF activity levels decreased by 20 and 40% in smoke-exposed mice and in the media of smoke-treated small airway epithelial (SAE) cells, respectively. To assess how PLTP affected inflammatory responses in a lung injury model, PLTP siRNA or recombinant protein was administered to the lungs of mice prior to LPS challenge. Silencing PLTP at baseline caused a 68% increase in inflammatory cell infiltration, a 120 and 340% increase in ERK and NF-κB activation, and increased MMP-9, IL1β, and IFN-γ levels after LPS treatment by 39, 140, and 190%, respectively. Conversely, PLTP protein administration countered these effects in this model. Thus, these findings establish a novel anti-inflammatory function of PLTP in the lung and suggest that proteolytic cleavage of PLTP by cathepsin G may enhance the injurious inflammatory responses that occur in COPD. Topics: Aged; Animals; Bronchoalveolar Lavage Fluid; Cathepsin G; Cells, Cultured; Epithelial Cells; Female; Humans; Inflammation; Interferon-gamma; Interleukin-1beta; Lipopolysaccharides; Lung; Male; Matrix Metalloproteinase 9; Mice; Middle Aged; NF-kappa B; Phospholipid Transfer Proteins; Pneumonia; Pulmonary Disease, Chronic Obstructive; Recombinant Proteins; RNA, Small Interfering; Signal Transduction; Smoking | 2014 |
Dual inhibition of cathepsin G and chymase is effective in animal models of pulmonary inflammation.
Mast cells and neutrophils are key contributors to the pathophysiological inflammatory processes that underpin asthma and chronic obstructive pulmonary disease, partly through the release of noxious serine proteases, including cathepsin G (Cat G) and chymase. From this standpoint, a dual inhibitor of neutrophil Cat G and mast cell chymase could protect against these disease-related inflammatory responses.. We examined the antiinflammatory pharmacology of RWJ-355871, a dual inhibitor of Cat G and chymase, in animal models of inflammation that evince pathophysiological pathways relevant to asthma and chronic obstructive pulmonary disease to determine the therapeutic potential of this compound.. In an ovalbumin (OVA)-sensitized rat model, RWJ-355871 was administered to block the mast-cell-mediated increase in paw volume caused by OVA injection. In a sheep asthma model, antigen-induced airway responses were assessed with and without aerosol treatment with RWJ-355871. In a murine tobacco-smoke model of airway inflammation, the effect of RWJ-355871 on smoke-induced neutrophilia was determined.. Intravenous treatment of OVA-sensitized rats with RWJ-355871 provided dose-dependent reduction in the increase in rat paw volume. In allergic sheep, aerosol pretreatment with RWJ-355871 showed dose-dependent inhibition of the antigen-induced early response, late response, and post-antigen-induced airway hyperreponsiveness. In tobacco-smoke-exposed mice, nebulized RWJ-355871 significantly reduced the smoke-induced neutrophilia from the levels observed in untreated mice.. The preclinical antiinflammatory effects of RWJ-355871 in these animal models of inflammation indicate that this dual inhibitor may have therapeutic utility for treating airway inflammatory diseases involving mechanisms that depend on Cat G and/or chymase. Topics: Animals; Biomarkers; Bronchoalveolar Lavage Fluid; Cathepsin G; Chymases; Disease Models, Animal; Dose-Response Relationship, Drug; Enzyme-Linked Immunosorbent Assay; Female; Injections, Intravenous; Lung Diseases; Mice; Organophosphonates; Piperidines; Pulmonary Disease, Chronic Obstructive; Rats; Sheep; Treatment Outcome | 2010 |
A novel, potent dual inhibitor of the leukocyte proteases cathepsin G and chymase: molecular mechanisms and anti-inflammatory activity in vivo.
Certain leukocytes release serine proteases that sustain inflammatory processes and cause disease conditions, such as asthma and chronic obstructive pulmonary disease. We identified beta-ketophosphonate 1 (JNJ-10311795; RWJ-355871) as a novel, potent dual inhibitor of neutrophil cathepsin G (K(i) = 38 nm) and mast cell chymase (K(i) = 2.3 nm). The x-ray crystal structures of 1 complexed with human cathepsin G (1.85 A) and human chymase (1.90 A) reveal the molecular basis of the dual inhibition. Ligand 1 occupies the S(1) and S(2) subsites of cathepsin G and chymase similarly, with the 2-naphthyl in S(1), the 1-naphthyl in S(2), and the phosphonate group in a complex network of hydrogen bonds. Surprisingly, however, the carboxamido-N-(naphthalene-2-carboxyl)piperidine group is found to bind in two distinct conformations. In cathepsin G, this group occupies the hydrophobic S(3)/S(4) subsites, whereas in chymase, it does not; rather, it folds onto the 1-naphthyl group of the inhibitor itself. Compound 1 exhibited noteworthy anti-inflammatory activity in rats for glycogen-induced peritonitis and lipopolysaccharide-induced airway inflammation. In addition to a marked reduction in neutrophil influx, 1 reversed increases in inflammatory mediators interleukin-1alpha, interleukin-1beta, tissue necrosis factor-alpha, and monocyte chemotactic protein-1 in the glycogen model and reversed increases in airway nitric oxide levels in the lipopolysaccharide model. These findings demonstrate that it is possible to inhibit both cathepsin G and chymase with a single molecule and suggest an exciting opportunity in the treatment of asthma and chronic obstructive pulmonary disease. Topics: Acute Disease; Animals; Anti-Inflammatory Agents, Non-Steroidal; Cathepsin G; Cathepsins; Chymases; Crystallography, X-Ray; Humans; Leukocytes; Male; Mast Cells; Organophosphonates; Peritonitis; Piperidines; Pulmonary Disease, Chronic Obstructive; Rats; Rats, Sprague-Dawley; Serine Endopeptidases; Serine Proteinase Inhibitors | 2005 |