catechin and Hyperhomocysteinemia

catechin has been researched along with Hyperhomocysteinemia in 7 studies

Research

Studies (7)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's1 (14.29)29.6817
2010's4 (57.14)24.3611
2020's2 (28.57)2.80

Authors

AuthorsStudies
Amer, ME; El-Missiry, MA; ElKomy, MA; Mostafa, MD; Othman, AI1
Chan, SH; Chen, HI; Chen, YA; Chou, WC; Chu, PM; Hsieh, PL; Li, CW; Ou, HC; Pai, PY; Tsai, KL; Wu, SY1
Ahsan, A; Chu, P; Han, G; Li, H; Lin, Y; Liu, S; Peng, J; Sun, B; Sun, Z; Tang, Z; Wu, J; Xi, Y; Zhang, Z; Zhou, Z1
Bian, ZX; Chen, ZY; Huang, Y; Ping Leung, F; San Cheang, W; Tak Wong, W; Wai Lau, C; Yen Tam, Y; Yu Tian, X; Yuen Ngai, C; Zhang, Y1
Arru, D; Carru, C; Cossu, A; Giordo, R; Mangoni, AA; Pintus, G; Posadino, AM; Scanu, B; Sotgia, S; Zinellu, A1
Janel, N; Lameth, J; Noll, C; Paul, JL1
Dairou, J; Delabar, JM; Demuth, K; Dupret, JM; Hamelet, J; Janel, N; Ledru, A; Paul, JL; Rodrigues-Lima, F1

Other Studies

7 other study(ies) available for catechin and Hyperhomocysteinemia

ArticleYear
Epigallocatechin-3-gallate Enhances Cognitive and Memory Performance and Protects Against Brain Injury in Methionine-induced Hyperhomocysteinemia Through Interdependent Molecular Pathways.
    Neurotoxicity research, 2022, Volume: 40, Issue:6

    Topics: Animals; Apoptosis Regulatory Proteins; Brain Injuries; Catechin; Cognition; Hyperhomocysteinemia; Male; Methionine; Mice; Oxidative Stress; Racemethionine

2022
Epigallocatechin Gallate Reduces Homocysteine-Caused Oxidative Damages through Modulation SIRT1/AMPK Pathway in Endothelial Cells.
    The American journal of Chinese medicine, 2021, Volume: 49, Issue:1

    Topics: AMP-Activated Protein Kinases; Antioxidants; Apoptosis; Catechin; Dose-Response Relationship, Drug; Homocysteine; Human Umbilical Vein Endothelial Cells; Humans; Hyperhomocysteinemia; NADPH Oxidases; Oxidative Stress; Phytotherapy; Protein Kinase C; Reactive Oxygen Species; Signal Transduction; Sirtuin 1; Tea

2021
EGCG protects against homocysteine-induced human umbilical vein endothelial cells apoptosis by modulating mitochondrial-dependent apoptotic signaling and PI3K/Akt/eNOS signaling pathways.
    Apoptosis : an international journal on programmed cell death, 2017, Volume: 22, Issue:5

    Topics: Antioxidants; Apoptosis; Atherosclerosis; Catechin; Homocysteine; Human Umbilical Vein Endothelial Cells; Humans; Hyperhomocysteinemia; Mitochondria; Nitric Oxide Synthase Type III; Oncogene Protein v-akt; Phosphatidylinositol 3-Kinases; Signal Transduction

2017
Black tea protects against hypertension-associated endothelial dysfunction through alleviation of endoplasmic reticulum stress.
    Scientific reports, 2015, May-15, Volume: 5

    Topics: Angiotensin II; Animals; Aorta; Biflavonoids; Blood Pressure; Camellia sinensis; Capillary Resistance; Catechin; Cells, Cultured; Endoplasmic Reticulum Stress; Endothelial Cells; Endothelium, Vascular; Homocysteine; Hyperhomocysteinemia; Hypertension; Male; Oxidative Stress; Plant Extracts; Rats; Rats, Sprague-Dawley; Reactive Oxygen Species; Tea; Vasodilation

2015
N- and S-homocysteinylation reduce the binding of human serum albumin to catechins.
    European journal of nutrition, 2017, Volume: 56, Issue:2

    Topics: Aminoacylation; Catechin; Cysteine; Electrophoresis, Capillary; Homocysteine; Humans; Hyperhomocysteinemia; Kinetics; Ligands; Lysine; Protein Processing, Post-Translational; Serum Albumin; Serum Albumin, Human

2017
Effect of catechin/epicatechin dietary intake on endothelial dysfunction biomarkers and proinflammatory cytokines in aorta of hyperhomocysteinemic mice.
    European journal of nutrition, 2013, Volume: 52, Issue:3

    Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Antioxidants; Aorta; Atherosclerosis; Biomarkers; Catechin; Crosses, Genetic; Cystathionine beta-Synthase; Cytokines; Dietary Supplements; Down-Regulation; Endothelium, Vascular; Female; Hyperhomocysteinemia; Methionine; Mice; Mice, Inbred C57BL; Mice, Knockout; Stereoisomerism

2013
Effects of catechin on homocysteine metabolism in hyperhomocysteinemic mice.
    Biochemical and biophysical research communications, 2007, Mar-30, Volume: 355, Issue:1

    Topics: Administration, Oral; Animal Feed; Animals; Catechin; Cystathionine beta-Synthase; DNA Primers; Homocysteine; Hyperhomocysteinemia; Liver; Methionine; Mice; Reverse Transcriptase Polymerase Chain Reaction; RNA; Superoxide Dismutase; Superoxide Dismutase-1

2007