catechin and Aortic Diseases

catechin has been researched along with Aortic Diseases in 7 studies

Research

Studies (7)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's1 (14.29)18.2507
2000's2 (28.57)29.6817
2010's4 (57.14)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Gan, Y; Liu, J; Liu, L; Tian, J; Zhao, W1
Franczyk-Żarów, M; Kostogrys, RB; Maślak, E; Mika, M; Wikiera, A1
Fumoto, T; Imaizumi, T; Masumoto, S; Matsuda, N; Miura, T; Naraoka, M; Ohkuma, H; Shoji, T; Wang, L1
Auclair, S; Besson, C; Chauvet, S; Gueux, E; Mazur, A; Milenkovic, D; Morand, C; Scalbert, A1
Croft, KD; Hime, N; Hodgson, JM; Loke, WM; Magat, M; McKinley, AJ; Proudfoot, JM; Stocker, R1
Auger, C; Besançon, P; Bornet, A; Caporiccio, B; Cristol, JP; Gérain, P; Lequeux, N; Rouanet, JM; Serisier, S; Teissedre, PL1
Aviram, M; Belinky, P; Coleman, R; Elis, A; Fuhrman, B; Hayek, T; Rosenblat, M; Vaya, J1

Other Studies

7 other study(ies) available for catechin and Aortic Diseases

ArticleYear
Epigallocatechin-3 gallate prevents pressure overload-induced heart failure by up-regulating SERCA2a via histone acetylation modification in mice.
    PloS one, 2018, Volume: 13, Issue:10

    Topics: Acetylation; Animals; Aortic Diseases; Cardiovascular Agents; Catechin; Constriction, Pathologic; Disease Models, Animal; Heart Failure; Histone Deacetylase 1; Histones; Male; Mice, Inbred C57BL; Promoter Regions, Genetic; Protective Agents; Random Allocation; RNA, Messenger; Sarcoplasmic Reticulum Calcium-Transporting ATPases; Up-Regulation

2018
Anti-atherosclerotic activity of catechins depends on their stereoisomerism.
    Atherosclerosis, 2015, Volume: 240, Issue:1

    Topics: Animals; Aorta; Aortic Diseases; Apolipoproteins E; Atherosclerosis; Biomarkers; Catechin; Cholesterol, HDL; Disease Models, Animal; Hypolipidemic Agents; Male; Mice, Knockout; Molecular Structure; Stereoisomerism; Structure-Activity Relationship; Thiobarbituric Acid Reactive Substances; Triglycerides; Weight Gain

2015
Regression of atherosclerosis with apple procyanidins by activating the ATP-binding cassette subfamily A member 1 in a rabbit model.
    Atherosclerosis, 2017, Volume: 258

    Topics: Animals; Aorta; Aortic Diseases; Atherosclerosis; ATP Binding Cassette Transporter 1; Biflavonoids; Cardiovascular Agents; Catechin; Cholesterol; Disease Models, Animal; Fruit; Lipoproteins, LDL; Male; Malus; Oxidative Stress; Phytotherapy; Plants, Medicinal; Plaque, Atherosclerotic; Proanthocyanidins; Reactive Oxygen Species; RNA, Messenger; Scavenger Receptors, Class E; Time Factors; Up-Regulation

2017
Catechin reduces atherosclerotic lesion development in apo E-deficient mice: a transcriptomic study.
    Atherosclerosis, 2009, Volume: 204, Issue:2

    Topics: Animals; Antioxidants; Aortic Diseases; Apolipoproteins E; Atherosclerosis; Catechin; Dietary Supplements; Disease Models, Animal; Disease Progression; Gene Expression Profiling; Gene Expression Regulation; Inflammation; Inflammation Mediators; Lipids; Liver; Male; Mice; Mice, Knockout; Oligonucleotide Array Sequence Analysis; Polymerase Chain Reaction; Serum Amyloid A Protein

2009
Specific dietary polyphenols attenuate atherosclerosis in apolipoprotein E-knockout mice by alleviating inflammation and endothelial dysfunction.
    Arteriosclerosis, thrombosis, and vascular biology, 2010, Volume: 30, Issue:4

    Topics: Animals; Anti-Inflammatory Agents; Aorta; Aortic Diseases; Apolipoproteins E; Atherosclerosis; Biflavonoids; Biomarkers; Catechin; Chlorogenic Acid; Cholesterol; Diet; Dioxoles; Disease Models, Animal; Endothelin-1; Endothelium, Vascular; F2-Isoprostanes; Fatty Acids; Flavonoids; Heme Oxygenase-1; Inflammation; Leukotriene B4; Lignans; Male; Membrane Proteins; Mice; Mice, Inbred C57BL; Mice, Knockout; Nitrates; Nitric Oxide; Nitric Oxide Synthase Type III; Nitrites; Oxidative Stress; P-Selectin; Phenols; Polyphenols; Quercetin; Superoxides

2010
Dietary wine phenolics catechin, quercetin, and resveratrol efficiently protect hypercholesterolemic hamsters against aortic fatty streak accumulation.
    Journal of agricultural and food chemistry, 2005, Mar-23, Volume: 53, Issue:6

    Topics: Animals; Aortic Diseases; Arteriosclerosis; Catechin; Cricetinae; Disease Models, Animal; Hypercholesterolemia; Male; Mesocricetus; Quercetin; Resveratrol; Stilbenes; Wine

2005
Reduced progression of atherosclerosis in apolipoprotein E-deficient mice following consumption of red wine, or its polyphenols quercetin or catechin, is associated with reduced susceptibility of LDL to oxidation and aggregation.
    Arteriosclerosis, thrombosis, and vascular biology, 1997, Volume: 17, Issue:11

    Topics: Animals; Antioxidants; Aorta; Aortic Diseases; Apolipoproteins E; Arteriosclerosis; Catechin; Cholesterol, LDL; Disease Progression; Drug Evaluation, Preclinical; Foam Cells; Free Radical Scavengers; Lipoproteins, LDL; Macrophages; Mice; Mice, Knockout; Oxidation-Reduction; Particle Size; Quercetin; Wine

1997