casticin and Prostatic-Neoplasms

casticin has been researched along with Prostatic-Neoplasms* in 3 studies

Other Studies

3 other study(ies) available for casticin and Prostatic-Neoplasms

ArticleYear
Casticin inhibits human prostate cancer DU 145 cell migration and invasion via Ras/Akt/NF-κB signaling pathways.
    Journal of food biochemistry, 2019, Volume: 43, Issue:7

    Casticin, a polymethoxyflavone derived from natural plants, has biological activities including induction of cell apoptosis. In this study, we showed the beneficial effects of casticin on the inhibition of prostate cancer cell metastasis. Casticin reduced total viable cell number, thus, we selected low doses of casticin for following experiments. Casticin decreased cell mobility, suppressed cell migration and invasion, and reduced cell gelatinolytic activities of MMP-2/-9. Furthermore, casticin inhibited the protein levels of AKT, GSK3 αβ, Snail, and MMPs (MMP-2, -9, -13, and -7) at 24 and 48 hr treatment. Casticin diminished the expressions of NF-κB p65, GRB2, SOS-1, MEK, p-ERK1/2, and p-JNK1/2 at 48 hr treatment only. However, casticin reduced the level of E-cadherin at 24 hr treatment but elevated at 48 hr. The novel findings suggest that casticin may represent a new and promising therapeutic agent for the metastatic prostate cancer. PRACTICAL APPLICATIONS: Casticin derived from natural plants had been used for Chinese medicine in Chinese population for thousands of years. In the present study, casticin attenuated metastatic effects, including decreasing viable cell number, inhibiting the migration, invasion, and adhesion, and reducing matrix metalloproteinases activity on human prostate DU 145 cancer cells. In addition, the results also provided possible pathways involved in casticin anti-metastasis mechanism. We conclude that casticin may be an aptitude anticancer agent or adjuvant for the metastatic prostate cancer in the future.

    Topics: Antineoplastic Agents, Phytogenic; Apoptosis; Cell Adhesion; Cell Line, Tumor; Cell Movement; Flavonoids; Humans; Male; Neoplasm Invasiveness; Neoplasm Metastasis; Oncogene Protein v-akt; Prostate; Prostatic Neoplasms; ras Proteins; Signal Transduction; Transcription Factor RelA

2019
Vitexicarpin induces apoptosis in human prostate carcinoma PC-3 cells through G2/M phase arrest.
    Asian Pacific journal of cancer prevention : APJCP, 2012, Volume: 13, Issue:12

    Vitexicarpin (3', 5-dihydroxy-3, 4', 6, 7-tetramethoxyflavone), a polymethoxyflavone isolated from Viticis Fructus (Vitex rotundifolia Linne fil.), has long been used as an anti-inflammatory herb in traditional Chinese medicine. It has also been reported that vitexicarpin can inhibit the growth of various cancer cells. However, there is no report elucidating its effect on human prostate carcinoma cells. The aim of the present study was to examine the apoptotic induction activity of vitexicarpin on PC-3 cells and molecular mechanisms involved. MTT studies showed that vitexicarpin dose-dependently inhibited growth of PC-3 cells with an IC50~28.8 μM. Hoechst 33258 staining further revealed that vitexicarpin induced apoptotic cell death. The effect of vitexicarpin on PC-3 cells apoptosis was tested using prodium iodide (PI)/Annexin V-FITC double staining and flow cytometry. The results indicated that vitexicarpin induction of apoptotic cell death in PC-3 cells was accompanied by cell cycle arrest in the G2/M phase. Furthermore, our study demonstrated that vitexicarpin induction of PC-3 cell apoptosis was associated with upregulation of the proapoptotic protein Bax, and downregulation of antiapoptotic protein Bcl-2, release of Cytochrome c from mitochondria and decrease in mitochondrial membrane potential. Our findings suggested that vitexicarpin may become a potential leading drug in the therapy of prostate carcinoma.

    Topics: Apoptosis; bcl-2-Associated X Protein; Carcinoma; Cell Cycle Checkpoints; Cell Death; Cell Division; Cell Line, Tumor; Cytochromes c; Down-Regulation; Flavonoids; G2 Phase; Humans; Male; Medicine, Chinese Traditional; Membrane Potential, Mitochondrial; Mitochondria; Plant Extracts; Prostatic Neoplasms; Proto-Oncogene Proteins c-bcl-2; Up-Regulation

2012
Cytotoxic flavone analogues of vitexicarpin, a constituent of the leaves of Vitex negundo.
    Journal of natural products, 2003, Volume: 66, Issue:6

    Bioassay-guided fractionation of the chloroform-soluble extract of the leaves of Vitex negundo led to the isolation of the known flavone vitexicarpin (1), which exhibited broad cytotoxicity in a human cancer cell line panel. In an attempt to increase the cytotoxic potency of 1, a series of acylation reactions was performed on this compound to obtain its methylated (2), acetylated (3), and six new acylated (4-9) derivatives. Compound 9, the previously unreported 5,3'-dihexanoyloxy-3,6,7,4'-tetramethoxyflavone, showed comparative cytotoxic potency to compound 1 and was selected for further evaluation. However, this compound was found to be inactive when evaluated in the in vivo hollow fiber assay with Lu1, KB, and LNCaP cells at the highest dose (40 mg/kg/body weight) tested, and in the in vivo P-388 leukemia model (135 mg/kg), using the ip administration route.

    Topics: Acylation; Animals; Antineoplastic Agents, Phytogenic; Colonic Neoplasms; Disease Models, Animal; Drug Screening Assays, Antitumor; Flavonoids; Humans; Indonesia; Inhibitory Concentration 50; Leukemia P388; Lung Neoplasms; Male; Methylation; Mice; Molecular Structure; Nuclear Magnetic Resonance, Biomolecular; Plant Leaves; Plants, Medicinal; Prostatic Neoplasms; Tumor Cells, Cultured; Vitex

2003