caseins has been researched along with BH4 Deficiency in 36 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 5 (13.89) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 0 (0.00) | 29.6817 |
2010's | 19 (52.78) | 24.3611 |
2020's | 12 (33.33) | 2.80 |
Authors | Studies |
---|---|
Ahring, KK; Brüel, A; Brøndum-Nielsen, K; Christensen, M; Dagnæs-Hansen, F; Jensen, E; Jensen, TG; Johannsen, M; Johansen, KS; Kjolby, M; Lund, AM; Madsen, JG; Møller, LB; Pedersen, M; Sørensen, LK | 1 |
Daly, A; Evans, S; MacDonald, A; Pinto, A | 1 |
Bighinati, A; Giardino, L; Giarratana, N; Reiner, G; Rocha, JC | 1 |
Banderali, G; Borghi, E; Ceccarani, C; Corsello, A; Dei Cas, M; Montanari, C; Ottaviano, E; Verduci, E; Zuccotti, G; Zuvadelli, J | 1 |
Bensi, G; Biasucci, G; Carbone, MT; Parolisi, S; Pozzoli, A; Schiaffino, MC | 1 |
Bollati, C; Burlina, A; d'Adduzio, L; Fanzaga, M; Fiori, L; Lammi, C; Li, J; Tosi, M; Verduci, E; Zuccotti, G | 1 |
Ashmore, C; Covington, JA; Daly, A; Evans, S; Hattersley, J; MacDonald, A; Pinto, A; Tiele, A | 1 |
Ashmore, C; Daly, A; Evans, S; Jackson, R; MacDonald, A; Pinto, A; Rocha, JC | 2 |
Ashmore, C; Daly, A; Evans, S; MacDonald, A; Pinto, A | 1 |
Bandeira, A; Borges, N; de Almeida, MF; de Sousa Barbosa, C; Dias, CC; Guimas, A; MacDonald, A; Martins, E; Pena, MJ; Pinto, A; Ramos, PC; Ribeiro, R; Rocha, JC; Rocha, S | 1 |
Ashmore, C; Crabtree, N; Daly, A; Evans, S; Högler, W; Jackson, R; MacDonald, A; Pinto, A; Rocha, JC; Shaw, N; Strauss, BJ; Wilcox, G | 1 |
Levy, HL; Murali, SG; Nair, N; Ney, DM; Rohr, F; Sawin, EA; Stroup, BM | 1 |
Almeida, MF; Bandeira, A; Guimas, A; MacDonald, A; Martins, E; Pinto, A; Ramos, PC; Ribeiro, R; Rocha, JC; Rocha, S | 1 |
Broniowska, K; Levy, HL; Murali, SG; Nair, N; Ney, DM; Rohr, F; Stroup, BM | 1 |
Dotsikas, Y; Loukas, YL; Manta-Vogli, PD; Schulpis, KH | 1 |
Azevedo, L; Borges, N; Daly, A; MacDonald, A; Pena, MJ; Pinto, A; Rocha, JC | 1 |
Chahal, S; Daly, A; Evans, S; Gingell, C; Jackson, R; MacDonald, A; Pinto, A; Rocha, J; Santra, S; Van Spronsen, FJ | 1 |
Azevedo, TD; Cândido, LMB; Krüger, CCH; Piltz, MT; Silva, ÁT | 1 |
Bonnemains, C; Feillet, F | 1 |
Blank, RD; Hansen, KE; Ney, DM | 1 |
Murali, SG; Ney, DM; Sawin, EA | 1 |
Aguiar, A; Ahring, K; Almeida, MF; Assoun, M; Belanger Quintana, A; Bigot, S; Bihet, G; Blom Malmberg, K; Burlina, A; Bushueva, T; Caris, A; Chan, H; Clark, A; Clark, S; Cochrane, B; Corthouts, K; Dalmau, J; Dassy, M; De Meyer, A; Didycz, B; Diels, M; Dokupil, K; Dubois, S; Eftring, K; Ekengren, J; Ellerton, C; Evans, S; Faria, A; Fischer, A; Ford, S; Freisinger, P; Giżewska, M; Gokmen-Ozel, H; Gribben, J; Gunden, F; Heddrich-Ellerbrok, M; Heiber, S; Heidenborg, C; Jankowski, C; Janssen-Regelink, R; Joerg-Streller, M; Jones, I; Jonkers, C; Kaalund-Hansen, K; Kiss, E; Lammardo, AM; Lang, K; Lier, D; Lilje, R; Lowry, S; Luyten, K; MacDonald, A; Meyer, U; Moor, D; Pal, A; Robert, M; Robertson, L; Rocha, JC; Rohde, C; Ross, K; Saruhan, S; Sjöqvist, E; Skeath, R; Stoelen, L; Ter Horst, NM; Terry, A; Timmer, C; Tuncer, N; van der Ploeg, L; van Rijn, M; van Spronsen, FJ; van Teeffelen-Heithoff, A; van Wegberg, A; van Wyk, K; Vande Kerckhove, K; Vasconcelos, C; Vitoria, I; Webster, D; White, FJ; Wildgoose, J; Zweers, H | 1 |
Adachi, O; Castañeda, MT; Hours, RA | 1 |
Aktas, B; De Wolfe, TJ; Murali, SG; Ney, DM; Sawin, EA; Steele, JL; Stroup, BM | 1 |
Ahring, K; Bélanger-Quintana, A; de Almeida, MF; Dokoupil, K; Gokmen-Ozel, H; Lammardo, AM; MacDonald, A; Pena, MJ; Robert, M; Rocha, JC; van Dam, E | 1 |
Clayton, MK; Levy, HL; Murali, SG; Ney, DM; Rice, GM; Rohr, F; Stroup, BM | 1 |
Chahal, S; Daly, A; Evans, S; MacDonald, A; Santra, S | 1 |
Clayton, MK; MacLeod, EL; Ney, DM; van Calcar, SC | 1 |
Brinkman, AS; Clayton, MK; Murali, SG; Nelson, DW; Ney, DM; Solverson, P; Yen, CL | 1 |
Blank, RD; Litscher, SJ; Murali, SG; Ney, DM; Solverson, P | 1 |
GRUTTNER, R; MULLER, F; WALLIS, H | 1 |
O'DALY, S | 1 |
PAINE, RS | 1 |
BOELENS, CH | 1 |
8 review(s) available for caseins and BH4 Deficiency
Article | Year |
---|---|
Glycomacropeptide in PKU-Does It Live Up to Its Potential?
Topics: Animals; Caseins; Peptide Fragments; Phenylalanine; Phenylketonurias | 2022 |
Protein Substitutes in PKU; Their Historical Evolution.
Topics: Amino Acids; Animals; Caseins; Child, Preschool; Dietary Proteins; Female; History, 20th Century; History, 21st Century; Humans; Nutritional Requirements; Peptide Fragments; Phenylalanine; Phenylketonurias; Phenylpyruvic Acids; Protein Hydrolysates; United Kingdom | 2021 |
The phenylketonuria patient: A recent dietetic therapeutic approach.
Topics: Amino Acids; Animals; Biopterins; Caseins; Diet; Diet, Protein-Restricted; Dietetics; Humans; Peptide Fragments; Phenylketonurias | 2020 |
The Use of Glycomacropeptide in Patients with Phenylketonuria: A Systematic Review and Meta-Analysis.
Topics: Amino Acids; Caseins; Diet, Protein-Restricted; Dietary Supplements; Humans; Peptide Fragments; Phenylalanine; Phenylketonurias; Tyrosine | 2018 |
Glycomacropeptide: long-term use and impact on blood phenylalanine, growth and nutritional status in children with PKU.
Topics: Adolescent; Caseins; Child; Child, Preschool; Female; Humans; Longitudinal Studies; Male; Nutritional Status; Peptide Fragments; Phenylalanine; Phenylketonurias | 2019 |
[Phenylketonuria: new treatments].
Topics: Amino Acids, Neutral; Biopterins; Caseins; Dietary Supplements; Enzyme Replacement Therapy; Genetic Therapy; Humans; Peptide Fragments; Phenylalanine Ammonia-Lyase; Phenylketonurias | 2013 |
Advances in the nutritional and pharmacological management of phenylketonuria.
Topics: Amino Acids; Biopterins; Bone and Bones; Caseins; Dietary Supplements; Humans; Milk Proteins; Mutation; Peptide Fragments; Phenylalanine; Phenylalanine Hydroxylase; Phenylketonurias; Randomized Controlled Trials as Topic; Tyrosine; Whey Proteins | 2014 |
Amino acid intoxication.
Topics: Alanine; Amino Acid Metabolism, Inborn Errors; Amino Acids; Animals; Benzyl Compounds; Biological Transport, Active; Brain; Caseins; Chickens; Cytoplasm; Endoplasmic Reticulum; Fasting; Feeding Behavior; Glutathione; Growth; Humans; Injections, Intraperitoneal; Leucine; Liver; Methionine; Microsomes; Mitochondrial Swelling; Phenylalanine; Phenylketonurias; Phenylpyruvic Acids; Protein Biosynthesis; Rats; Tyrosine | 1971 |
4 trial(s) available for caseins and BH4 Deficiency
Article | Year |
---|---|
Metabolomic changes demonstrate reduced bioavailability of tyrosine and altered metabolism of tryptophan via the kynurenine pathway with ingestion of medical foods in phenylketonuria.
Topics: Adolescent; Adult; Amino Acids; Biological Availability; Caseins; Catecholamines; Cross-Over Studies; Diet; Female; Food, Formulated; Gastrointestinal Microbiome; Humans; Kynurenine; Male; Melatonin; Metabolic Networks and Pathways; Metabolomics; Middle Aged; Peptide Fragments; Phenylketonurias; Prebiotics; Serotonin; Tryptophan; Tyrosine; Young Adult | 2017 |
Metabolomic Markers of Essential Fatty Acids, Carnitine, and Cholesterol Metabolism in Adults and Adolescents with Phenylketonuria.
Topics: Adolescent; Adult; Amino Acids; Betaine; Biomarkers; Carnitine; Caseins; Cholesterol; Cross-Over Studies; Dietary Supplements; Erythrocytes; Fasting; Fatty Acids; Fatty Acids, Essential; Female; Gastrointestinal Microbiome; Humans; Lipid Metabolism; Male; Metabolomics; Methylamines; Middle Aged; Peptide Fragments; Phenylketonurias | 2018 |
Glycomacropeptide for nutritional management of phenylketonuria: a randomized, controlled, crossover trial.
Topics: Adolescent; Adult; Analysis of Variance; Caseins; Cross-Over Studies; Dietary Proteins; Feeding Behavior; Female; Foods, Specialized; Gastrointestinal Diseases; Humans; Hunger; Male; Middle Aged; Patient Satisfaction; Peptide Fragments; Phenylalanine; Phenylketonurias; Young Adult | 2016 |
Breakfast with glycomacropeptide compared with amino acids suppresses plasma ghrelin levels in individuals with phenylketonuria.
Topics: Adolescent; Adult; Amino Acids; Caseins; Child; Diet; Female; Food; Ghrelin; Humans; Insulin; Male; Motivation; Pain Measurement; Peptide Fragments; Phenylketonurias; Postprandial Period; Satiety Response; Young Adult | 2010 |
24 other study(ies) available for caseins and BH4 Deficiency
Article | Year |
---|---|
The effect of casein glycomacropeptide versus free synthetic amino acids for early treatment of phenylketonuria in a mice model.
Topics: Amino Acids; Animals; Bone and Bones; Bone Density; Brain; Caseins; Dietary Supplements; Disease Models, Animal; Female; Maze Learning; Mice; Mice, Inbred C57BL; Peptide Fragments; Phenylalanine; Phenylalanine Hydroxylase; Phenylketonurias; Serotonin; Tyrosine | 2022 |
In Vivo Metabolic Responses to Different Formulations of Amino Acid Mixtures for the Treatment of Phenylketonuria (PKU).
Topics: Amino Acids; Animals; Biomarkers; Caseins; Diet, Protein-Restricted; Male; Membrane Proteins; Myostatin; Phenylketonurias; Rats; Rats, Wistar | 2022 |
Glycomacropeptide Safety and Its Effect on Gut Microbiota in Patients with Phenylketonuria: A Pilot Study.
Topics: Animals; Caseins; Gastrointestinal Microbiome; Humans; Mice; Peptide Fragments; Phenylketonurias; Pilot Projects; Prebiotics; RNA, Ribosomal, 16S | 2022 |
Quality of life aspects of a low protein diet using GMP in patients with phenylketonuria.
Topics: Caseins; Cholesterol; Diet, Protein-Restricted; Humans; Peptide Fragments; Phenylketonurias; Quality of Life; Vitamins | 2022 |
Glycomacropeptide (GMP) rescued the oxidative and inflammatory activity of free L-AAs in human Caco-2 cells: New insights that support GMP as a valid and health-promoting product for the dietary management of phenylketonuria (PKU) patients.
Topics: Caco-2 Cells; Caseins; Humans; Hydrogen Peroxide; Phenylketonurias | 2023 |
Investigation of paediatric PKU breath malodour, comparing glycomacropeptide with phenylalanine free L-amino acid supplements.
Topics: Adolescent; Breath Tests; Caseins; Child; Confounding Factors, Epidemiologic; Cross-Over Studies; Dietary Supplements; Exhalation; Female; Gas Chromatography-Mass Spectrometry; Humans; Longitudinal Studies; Male; Peptide Fragments; Phenylalanine; Phenylketonurias; Surveys and Questionnaires; Volatile Organic Compounds | 2019 |
Preliminary Investigation to Review If a Glycomacropeptide Compared to L-Amino Acid Protein Substitute Alters the Pre- and Postprandial Amino Acid Profile in Children with Phenylketonuria.
Topics: Adolescent; Age Factors; Amino Acids; Caseins; Child; Child, Preschool; Female; Humans; Insulin; Male; Nitrogen; Peptide Fragments; Phenylalanine; Phenylketonurias; Postprandial Period; Time Factors; Urea | 2020 |
The Impact of the Use of Glycomacropeptide on Satiety and Dietary Intake in Phenylketonuria.
Topics: Adolescent; Amino Acids; Anthropometry; Body Mass Index; Body Weight; Caseins; Child; Child, Preschool; Diet Surveys; Diet, Protein-Restricted; Energy Intake; Female; Glycopeptides; Humans; Longitudinal Studies; Male; Nutrients; Phenylalanine; Phenylketonurias; Prospective Studies; Satiation | 2020 |
Continuous use of glycomacropeptide in the nutritional management of patients with phenylketonuria: a clinical perspective.
Topics: Adolescent; Adult; Caseins; Female; Humans; Male; Peptide Fragments; Phenylketonurias; Prospective Studies; Retrospective Studies; Young Adult | 2021 |
Growth and Body Composition in PKU Children-A Three-Year Prospective Study Comparing the Effects of L-Amino Acid to Glycomacropeptide Protein Substitutes.
Topics: Absorptiometry, Photon; Adolescent; Amino Acids; Body Composition; Body Height; Caseins; Child; Child, Preschool; Dietary Proteins; Dietary Supplements; Female; Growth; Humans; Longitudinal Studies; Male; Peptide Fragments; Phenylalanine; Phenylketonurias; Prospective Studies; Treatment Outcome | 2021 |
Nutritional status in patients with phenylketonuria using glycomacropeptide as their major protein source.
Topics: Adolescent; Adult; Body Composition; Caseins; Dietary Proteins; Female; Humans; Longitudinal Studies; Male; Middle Aged; Nutritional Status; Peptide Fragments; Phenylketonurias; Portugal; Retrospective Studies; Young Adult | 2017 |
Casein-derived peptides as an alternative ingredient for low-phenylalanine diets.
Topics: Amino Acids; Caseins; Diet; Humans; Peptides; Phenylalanine; Phenylketonurias | 2019 |
Differential effects of low-phenylalanine protein sources on brain neurotransmitters and behavior in C57Bl/6-Pah(enu2) mice.
Topics: Animals; Behavior, Animal; Brain; Caseins; Catecholamines; Dietary Proteins; Female; Genotype; Male; Mice; Mice, Inbred C57BL; Motor Activity; Neurotransmitter Agents; Organ Size; Peptide Fragments; Phenylalanine; Phenylketonurias; Serotonin; Time Factors | 2014 |
Practices in prescribing protein substitutes for PKU in Europe: No uniformity of approach.
Topics: Adult; Amino Acids; Caseins; Child; Child, Preschool; Dietary Proteins; Dietary Supplements; Europe; Female; Humans; Infant; Infant, Newborn; Male; Peptide Fragments; Phenylalanine; Phenylketonurias; Surveys and Questionnaires; Turkey; World Health Organization | 2015 |
Reduction of L-phenylalanine in protein hydrolysates using L-phenylalanine ammonia-lyase from Rhodosporidium toruloides.
Topics: Basidiomycota; Caseins; Cinnamates; Dietary Supplements; Humans; Hydrogen-Ion Concentration; Kinetics; Phenylalanine; Phenylalanine Ammonia-Lyase; Phenylketonurias; Protein Hydrolysates; Temperature | 2015 |
Glycomacropeptide is a prebiotic that reduces Desulfovibrio bacteria, increases cecal short-chain fatty acids, and is anti-inflammatory in mice.
Topics: Animals; Caseins; Cecum; Cytokines; Desulfovibrio; Fatty Acids, Volatile; Feces; Female; Flow Cytometry; Gastrointestinal Microbiome; Male; Mice; Mice, Inbred C57BL; Peptide Fragments; Phenylketonurias; Prebiotics | 2015 |
Protein substitutes for phenylketonuria in Europe: access and nutritional composition.
Topics: Amino Acids; Amino Acids, Neutral; Caseins; Dietary Proteins; Europe; Food, Formulated; Humans; Peptide Fragments; Phenylalanine; Phenylketonurias; Turkey | 2016 |
Glycomacropeptide in children with phenylketonuria: does its phenylalanine content affect blood phenylalanine control?
Topics: Adolescent; Amino Acids; Anthropometry; Caseins; Child; Diet; Female; Humans; Male; Micronutrients; Nutrition Assessment; Peptide Fragments; Phenylalanine; Phenylketonurias; Pilot Projects; Prospective Studies; Tyrosine | 2017 |
Glycomacropeptide, a low-phenylalanine protein isolated from cheese whey, supports growth and attenuates metabolic stress in the murine model of phenylketonuria.
Topics: Absorptiometry, Photon; Amino Acids; Animals; Body Composition; Body Weight; Caseins; Cheese; Cytokines; Diet; Diet, Protein-Restricted; Energy Metabolism; Growth; Mice; Mice, Inbred C57BL; Organ Size; Oxygen Consumption; Peptide Fragments; Phenotype; Phenylketonurias; Spleen; Splenomegaly | 2012 |
Low bone strength is a manifestation of phenylketonuria in mice and is attenuated by a glycomacropeptide diet.
Topics: Absorptiometry, Photon; Animals; Biomechanical Phenomena; Bone Density; Caseins; Diet, Protein-Restricted; Elastic Modulus; Female; Femur; Male; Mice; Mice, Inbred C57BL; Mice, Transgenic; Peptide Fragments; Phenotype; Phenylalanine; Phenylalanine Hydroxylase; Phenylketonurias | 2012 |
[Evaluation of the success of dietetic treatment with casein hydrolysate low in phenylalanine in phenylpyruvic oligophrenia].
Topics: Caseins; Dietetics; Humans; Phenylalanine; Phenylketonurias | 1958 |
Phenylketonuria treated with a high phenylalanine intake and casein-hydrolysate/aminoacid mixtures.
Topics: Amino Acids; Caseins; Diet; Humans; Nutrition Assessment; Nutritional Status; Phenylalanine; Phenylketonurias | 1961 |
PHENYLKETONURIA.
Topics: Body Fluids; Caseins; Child; Diet; Diet Therapy; Eczema; Humans; Infant; Infant, Newborn; Intellectual Disability; Metabolism; Microcephaly; Phenylalanine; Phenylketonurias; Urine | 1964 |
[MANAGEMENT OF PATIENTS WITH PHENYLKETONURIA].
Topics: Blood; Caseins; Child; Diagnosis; Diet; Diet Therapy; Disease Management; Humans; Infant; Infant, Newborn; Phenylalanine; Phenylketonurias | 1964 |