casein-kinase-ii has been researched along with Neoplasm-Metastasis* in 10 studies
10 other study(ies) available for casein-kinase-ii and Neoplasm-Metastasis
Article | Year |
---|---|
Overexpression of NELFE contributes to gastric cancer progression via Wnt/β-catenin signaling-mediated activation of CSNK2B expression.
Accumulating evidence has highlighted the importance of negative elongation factor complex member E (NELFE) in tumorigenesis. However, the relationship between NELFE and gastric cancer (GC) remains unclear. This study aimed to explore the expression pattern and specific function of NELFE in GC.. NELFE expression was evaluated by immunohistochemistry and qRT-PCR in GC tissues, respectively. Cell proliferation, migration and invasion were measured by CCK-8, colony formation, transwell assays, and nude mice model. Bioinformatics analysis was performed to search potential target genes of NELFE, and a Cignal Finder 10-Pathway Reporter Array was used to explore potential signaling pathways regulated by NELFE. Dual-luciferase reporter assays, qRT-PCR and western blotting were conducted to verify their regulatory relationship. The expression correlations among NELFE, β-catenin and CSNK2B were further explored by immunohistochemistry on consecutive resections.. NELFE was significantly overexpressed in GC tissues both in protein and mRNA level and negatively correlated with the prognosis of GC patients. Gain- and loss-of-function experiments showed that NELFE potentiated GC cell proliferation and metastasis in vitro and in vivo. CSNK2B was identified as a downstream effector of NELFE. Wnt/β-catenin signaling may mediate the regulation of CSNK2B by NELFE. In addition, NELFE, β-catenin and CSNK2B were all remarkably upregulated in tumor tissues compared with adjacent normal tissues, and their expression levels in GC were positively correlated with each other.. Our findings reveal a new NELFE-Wnt/β-catenin-CSNK2B axis to promote GC progression and provide new candidate targets against this disease. Topics: Animals; Casein Kinase II; Cell Line, Tumor; Cell Movement; Cell Proliferation; Disease Models, Animal; Disease Progression; Gene Expression Regulation, Neoplastic; Humans; Immunohistochemistry; Male; Mice; Neoplasm Metastasis; Stomach Neoplasms; Transcription Factors; Wnt Signaling Pathway | 2021 |
Endothelin-converting enzyme-1c promotes stem cell traits and aggressiveness in colorectal cancer cells.
Endothelin-1 is a mitogenic peptide that activates several proliferation, survival, and invasiveness pathways. The effects of endothelin-1 rely on its activation by endothelin-converting enzyme-1 (ECE1), which is expressed as four isoforms with different cytoplasmic N termini. Recently, isoform ECE1c has been suggested to have a role in cancer aggressiveness. The N terminus of ECE1c is phosphorylated by protein kinase CK2 (also known as casein kinase 2), and this enhances its stability and promotes invasiveness in colorectal cancer cells. However, it is not known how phosphorylation improves stability and why this is correlated with increased aggressiveness. We hypothesized that CK2 phosphorylation protects ECE1c from N-terminal ubiquitination and, consequently, from proteasomal degradation. Here, we show that lysine 6 is the bona fide residue involved in ubiquitination of ECE1c and its mutation to arginine (ECE1c Topics: Animals; Carcinogenesis; Casein Kinase II; Cell Line, Tumor; Colorectal Neoplasms; Endothelin-Converting Enzymes; Female; Gene Expression Regulation, Neoplastic; Humans; Immunohistochemistry; Mice; Mice, Inbred BALB C; Mice, Inbred NOD; Mice, SCID; Mutation; Naphthyridines; Neoplasm Invasiveness; Neoplasm Metastasis; Neoplastic Stem Cells; Phenazines; Phosphorylation; Prognosis; Protein Stability; Recombinant Proteins; Up-Regulation; Xenograft Model Antitumor Assays | 2020 |
Tumor necrosis factor α-induced protein 1 as a novel tumor suppressor through selective downregulation of CSNK2B blocks nuclear factor-κB activation in hepatocellular carcinoma.
Tumor necrosis factor α-induced protein 1 (TNFAIP1) is frequently downregulated in cancer cell lines and promotes cancer cell apoptosis. However, its role, clinical significance and molecular mechanisms in hepatocellular carcinoma (HCC) are unknown.. The expression of TNFAIP1 in HCC tumor tissues and cell lines was measured by Western blot and immunohistochemistry. The effects of TNFAIP1 on HCC proliferation, apoptosis, metastasis, angiogenesis and tumor formation were evaluated by Cell Counting Kit-8 (CCK8), Terminal deoxynucleotidyl transferase dUTP Nick-End Labeling (TUNEL), transwell, tube formation assay in vitro and nude mice experiments in vivo. The interaction between TNFAIP1 and CSNK2B was validated by liquid chromatography-tandem mass spectrometry (LC-MS/MS), Co-immunoprecipitation and Western blot. The mechanism of how TNFAIP1 regulated nuclear factor-kappaB (NF-κB) pathway was analyzed by dual-luciferase reporter, immunofluorescence, quantitative Real-time polymerase chain reaction (RT-qPCR) and Western blot.. The TNFAIP1 expression is significantly decreased in HCC tissues and cell lines, and negatively correlated with the increased HCC histological grade. Overexpression of TNFAIP1 inhibits HCC cell proliferation, metastasis, angiogenesis and promotes cancer cell apoptosis both in vitro and in vivo, whereas the knockdown of TNFAIP1 in HCC cell displays opposite effects. Mechanistically, TNFAIP1 interacts with CSNK2B and promotes its ubiquitin-mediated degradation with Cul3, causing attenuation of CSNK2B-dependent NF-κB trans-activation in HCC cell. Moreover, the enforced expression of CSNK2B counteracts the inhibitory effects of TNFAIP1 on HCC cell proliferation, migration, and angiogenesis in vitro and in vivo.. Our results support that TNFAIP1 can act as a tumor suppressor of HCC by modulating TNFAIP1/CSNK2B/NF-κB pathway, implying that TNFAIP1 may represent a potential marker and a promising therapeutic target for HCC. Topics: Adaptor Proteins, Signal Transducing; Animals; Apoptosis; Carcinogenesis; Carcinoma, Hepatocellular; Casein Kinase II; Cell Line, Tumor; Cell Proliferation; Disease Progression; Down-Regulation; Female; Gene Expression Regulation, Neoplastic; Human Umbilical Vein Endothelial Cells; Humans; Liver Neoplasms; Male; Mice, Nude; Middle Aged; Neoplasm Invasiveness; Neoplasm Metastasis; Neovascularization, Pathologic; NF-kappa B; Proteolysis; Tumor Suppressor Proteins; Ubiquitin; Vascular Endothelial Growth Factor A | 2020 |
[CK2α Regulates the Metastases and Migration of Lung Adenocarcinoma
A549 Cell Line through PI3K/Akt/GSK-3β Signal Pathway].
Lung cancer is the leading cancer-related death worldwide. Patients with lung cancer mainly died of tumor metastasis and invasion. Protein kinase CK2 is an ubiquitous serine/threonine protein kinase and is frequently upregulated in various human tumors. This study aims to explore the effect and molecular mechanism of the invasion and migration of lung adenocarcinoma A549 cells after knock-down of CK2α expression.. The pSilencerTM 4.1-siCK2α-eGFP of lentiviral-mediated shRNA was constructed. The expression of CK2α was knock-downed, and a stable A549 cell line was established. The invasion and migration of A549 cell line was detected through Transwell and Boyden chamber assays. The protein expression of the PI3K/Akt signaling pathway and mesenchymal-to-epithelial transition (EMT) was evaluated using Western blot analysis.. The invasion and migration of A549 cells were significantly inhibited after the knockdown of CK2α expression compared with that in the control group. p-PTEN, Akt, p-Akt473, p-Akt308, p-PDK1, p-c-Raf, and p-GSK-3β were significantly downregulated, whereas PTEN was upregulated. Moreover, vimentin, β-catenin, Snail, MMP2, and MMP9 were significantly downregulated after reducing the CK2α expression.. CK2α might regulate the invasion and migration of A549 cells through the PI3K/Akt/GSK-3β/Snail signaling pathway, which controls EMT in lung adenocarcinoma. .. 背景与目的 肺癌已成为全球癌症死亡的首要原因,而侵袭和转移是导致肿瘤死亡的主要原因之一,蛋白激酶CK2是一种高度保守信使非依赖性丝氨酸苏氨酸蛋白激酶,其在各种肿瘤中高表达。本研究旨在探讨下调CK2α基因表达对肺腺癌A549细胞侵袭迁移的影响以及可能的机制。方法 构建pSilencerTM 4.1-shCK2α-eGFP慢病毒表达载体,建立稳定干扰CK2α表达的A549细胞株。利用Transwell和Boyden小室实验检测干扰CK2α表达前后A549细胞的侵袭及迁移的能力。Western blot检测PI3K/Akt信号通路和上皮-间充质转化(mesenchymal-to-epithelial transition, EMT)相关蛋白的表达。结果 与对照组相比,干扰CK2α表达后肺腺癌A549细胞的侵袭及迁移能力明显下降,p-PTEN、Akt、p-Akt473、p-Akt308、 p-PDK1、p-c-Raf、p-GSK-3β蛋白明显下调,PTEN蛋白表达水平显著上调。上皮-间充质转化的相关蛋白E-cadherin蛋白表达水平显著上调,而Vimentin、β-catenin、Snail蛋白表达水平显著下调,与侵袭转移相关蛋白的MMP2、MMP9表达水平显著下调。结论 CK2α可能通过PI3K/Akt/GSK-3β/Snail信号通路来调控上皮-间充质转化参与肺腺癌A549细胞的侵袭及迁移。. Topics: A549 Cells; Adenocarcinoma; Adenocarcinoma of Lung; Casein Kinase II; Cell Movement; Glycogen Synthase Kinase 3 beta; Humans; Lung Neoplasms; Neoplasm Metastasis; Phosphatidylinositol 3-Kinases; Proto-Oncogene Proteins c-akt; Signal Transduction | 2017 |
CIGB-300, an anti-CK2 peptide, inhibits angiogenesis, tumor cell invasion and metastasis in lung cancer models.
Casein kinase 2 (CK2) is overexpressed in several types of cancer. It has more than 300 substrates mainly involved in DNA reparation and replication, chromatin remodeling and cellular growth. In recent years CK2 became an interesting target for anticancer drug development. CIGB-300 is a peptidic inhibitor of CK2 activity, designed to bind to the phospho-acceptor domain of CK2 substrates, impairing the correct phosphorylation by the enzyme. The aim of this work was to explore the antitumor effects of this inhibitor in preclinical lung cancer models.. Human H125 and murine 3LL Lewis lung carcinoma cell lines were used to evaluate the effect of CIGB-300 treatment in vitro. For this purpose, adhesion, migration and invasion capabilities of cancer cells were tested. Proteolytic activity of tumor cell-secreted uPA and MMP after CIGB-300 incubation was also analyzed. In vivo anticancer efficacy of the peptide was evaluated using experimental and spontaneous lung colonization assays in C57BL/6 mice. Finally, in order to test the effect of CIGB-300 on tumor cell-induced angiogenesis, a modified Matrigel plug assay was conducted.. We demonstrate that treatment with low micromolar concentrations of CIGB-300 caused a drastic reduction of adhesion, migration and invasion of lung cancer cells. Reduced invasiveness after CIGB-300 incubation was associated with decreased proteolytic activity of tumor cell-conditioned medium. In vivo, intravenous administration of CIGB-300 (10mg/kg) markly decreased lung colonization and metastasis development of 3LL cells. Interestingly, after 5days of systemic treatment with CIGB-300, tumor cell-driven neovascularization was significantly reduced in comparison to control group. Altogether our data suggest an important role of CK2 in lung tumor development, suggesting a potential use of CIGB-300 as a novel therapeutic agent against lung cancer. Topics: Administration, Intravenous; Angiogenesis Inhibitors; Animals; Apoptosis; Casein Kinase II; Cell Line, Tumor; Cell Proliferation; Drug Evaluation, Preclinical; Humans; Lung Neoplasms; Mice; Mice, Inbred C57BL; Neoplasm Metastasis; Neovascularization, Pathologic; Peptides, Cyclic; Phosphorylation | 2017 |
The nucleolar protein NIFK promotes cancer progression via CK1α/β-catenin in metastasis and Ki-67-dependent cell proliferation.
Nucleolar protein interacting with the FHA domain of pKi-67 (NIFK) is a Ki-67-interacting protein. However, its precise function in cancer remains largely uninvestigated. Here we show the clinical significance and metastatic mechanism of NIFK in lung cancer. NIFK expression is clinically associated with poor prognosis and metastasis. Furthermore, NIFK enhances Ki-67-dependent proliferation, and promotes migration, invasion in vitro and metastasis in vivo via downregulation of casein kinase 1α (CK1α), a suppressor of pro-metastatic TCF4/β-catenin signaling. Inversely, CK1α is upregulated upon NIFK knockdown. The silencing of CK1α expression in NIFK-silenced cells restores TCF4/β-catenin transcriptional activity, cell migration, and metastasis. Furthermore, RUNX1 is identified as a transcription factor of CSNK1A1 (CK1α) that is negatively regulated by NIFK. Our results demonstrate the prognostic value of NIFK, and suggest that NIFK is required for lung cancer progression via the RUNX1-dependent CK1α repression, which activates TCF4/β-catenin signaling in metastasis and the Ki-67-dependent regulation in cell proliferation. Topics: Animals; beta Catenin; Casein Kinase II; Cell Proliferation; Disease Models, Animal; Humans; Intracellular Signaling Peptides and Proteins; Ki-67 Antigen; Korea; Lung Neoplasms; Mice; Neoplasm Metastasis; Nuclear Proteins | 2016 |
Protein kinase CK2α subunit over-expression correlates with metastatic risk in breast carcinomas: quantitative immunohistochemistry in tissue microarrays.
CK2α is a signalling molecule that participates in major events in solid tumour progression. The aim of this study was to evaluate the prognostic significance of the immunohistochemical expression of CK2α in breast carcinomas.. Quantitative measurements of immunohistochemical expression of 33 biomarkers using high-throughput densitometry, assessed on digitised microscopic tissue micro-array images were correlated with clinical outcome in 1000 breast carcinomas using univariate and multivariate analyses.. In univariate analysis, CK2α was a significant prognostic indicator (p<0.001). Moreover, a multivariable model allowed the selection of the best combination of the 33 biomarkers to predict patients' outcome through logistic regression. A nine-marker signature highly predictive of metastatic risk, associating SHARP-2, STAT1, eIF4E, pmapKAPk-2, pAKT, caveolin, VEGF, FGF-1 and CK2α permitted to classify well 82.32% of patients (specificity 81.59%, sensitivity 92.55%, area under ROC curve 0.939). Importantly, in a node negative subset of patients an even more (86%) clinically relevant association of eleven markers was found predictive of poor outcome.. A strong quantitative CK2α immunohistochemical expression in breast carcinomas is individually a significant indicator of poor prognosis. Moreover, an immunohistochemical signature of 11 markers including CK2α accurately (86%) well classifies node negative patients in good and poor outcome subsets. Our results suggest that CK2α evaluation together with key downstream CK2 targets might be a useful tool to identify patients at high risk of distant metastases and that CK2 can be considered as a relevant target for potential specific therapy. Topics: Biomarkers, Tumor; Breast Neoplasms; Casein Kinase II; Female; Humans; Immunohistochemistry; Neoplasm Metastasis; Prognosis; Risk Factors; ROC Curve; Tissue Array Analysis | 2011 |
IL-6 stabilizes Twist and enhances tumor cell motility in head and neck cancer cells through activation of casein kinase 2.
Squamous cell carcinoma of the head and neck (SCCHN) is the seventh most common cancer worldwide. Unfortunately, the survival of patients with SCCHN has not improved in the last 40 years, and thus new targets for therapy are needed. Recently, elevations in serum level of interleukin 6 (IL-6) and expression of Twist in tumor samples were found to be associated with poor clinical outcomes in multiple types of cancer, including SCCHN. Although Twist has been proposed as a master regulator of epithelial-mesenchymal transition and metastasis in cancers, the mechanisms by which Twist levels are regulated post-translationally are not completely understood. Tumor progression is characterized by the involvement of cytokines and growth factors and Twist induction has been connected with a number of these signaling pathways including IL-6. Since many of the effects of IL-6 are mediated through activation of protein phosphorylation cascades, this implies that Twist expression must be under a tight control at the post-translational level in order to respond in a timely manner to external stimuli.. Our data show that IL-6 increases Twist expression via a transcription-independent mechanism in many SCCHN cell lines. Further investigation revealed that IL-6 stabilizes Twist in SCCHN cell lines through casein kinase 2 (CK2) phosphorylation of Twist residues S18 and S20, and that this phosphorylation inhibits degradation of Twist. Twist phosphorylation not only increases its stability but also enhances cell motility. Thus, post-translational modulation of Twist contributes to its tumor-promoting properties.. Our study shows Twist expression can be regulated at the post-translational level through phosphorylation by CK2, which increases Twist stability in response to IL-6 stimulation. Our findings not only provide novel mechanistic insights into post-translational regulation of Twist but also suggest that CK2 may be a viable therapeutic target in SCCHN. Topics: Carcinoma, Squamous Cell; Casein Kinase II; Cell Line, Tumor; Enzyme Activation; Gene Expression Regulation, Enzymologic; Gene Expression Regulation, Neoplastic; Head and Neck Neoplasms; Humans; Interleukin-6; Neoplasm Metastasis; Nuclear Proteins; Phosphorylation; Protein Processing, Post-Translational; Reverse Transcriptase Polymerase Chain Reaction; Twist-Related Protein 1; Wound Healing | 2011 |
Differential regulation of phosphoglucose isomerase/autocrine motility factor activities by protein kinase CK2 phosphorylation.
Phosphoglucose isomerase (PGI; EC 5.3.1.9) is a cytosolic housekeeping enzyme of the sugar metabolism pathways that plays a key role in both glycolysis and gluconeogenesis. PGI is a multifunctional dimeric protein that extracellularly acts as a cytokine with properties that include autocrine motility factor (AMF)-eliciting mitogenic, motogenic, and differentiation functions, and PGI has been implicated in tumor progression and metastasis. Little is known of the biochemical regulation of PGI/AMF activities, although it is known that human PGI/AMF is phosphorylated at Ser(185) by protein kinase CK2 (CK2); however, the physiological significance of this phosphorylation is unknown. Thus, by site-directed mutagenesis, we substituted Ser(185) with aspartic acid (S185D) or glutamic acid (S185E), which introduces a negative charge and conformational changes that mimic phosphorylation. A Ser-to-Ala mutant protein (S185A) was generated to abolish phosphorylation. Biochemical analyses revealed that the phosphorylation mutant proteins of PGI exhibited decreased enzymatic activity, whereas the S185A mutant PGI protein retained full enzymatic activity. PGI phosphorylation by CK2 also led to down-regulation of enzymatic activity. Furthermore, CK2 knockdown by RNA interference was associated with up-regulation of cellular PGI enzymatic activity. The three recombinant mutant proteins exhibited indistinguishable cytokine activity and receptor-binding affinities compared with the wild-type protein. In both in vitro and in vivo assays, the wild-type and S185A mutant proteins underwent active species dimerization, whereas both the S185D and S185E mutant proteins also formed tetramers. These results demonstrate that phosphorylation affects the allosteric kinetic properties of the enzyme, resulting in a less active form of PGI, whereas non-phosphorylated protein species retain cytokine activity. The process by which phosphorylation modulates the enzymatic activity of PGI thus has an important implication for the understanding of the biological regulation of this key glucose metabolism-regulating enzyme. Topics: Amino Acid Sequence; Binding Sites; Casein Kinase II; Cell Line, Tumor; Cross-Linking Reagents; Cytokines; Cytosol; Dimerization; Disease Progression; Dose-Response Relationship, Drug; Down-Regulation; Gene Expression Regulation, Enzymologic; Glucose; Glucose-6-Phosphate Isomerase; Glycolysis; Humans; Kinetics; Ligands; Models, Molecular; Molecular Sequence Data; Mutagenesis, Site-Directed; Mutation; Neoplasm Metastasis; Phosphorylation; Protein Conformation; Protein Structure, Secondary; Recombinant Proteins; RNA Interference; RNA, Small Interfering; Serine; Time Factors; Transfection; Up-Regulation | 2005 |
Liprin beta 1, a member of the family of LAR transmembrane tyrosine phosphatase-interacting proteins, is a new target for the metastasis-associated protein S100A4 (Mts1).
Metastasis-associated protein S100A4 (Mts1) induces invasiveness of primary tumors and promotes metastasis. S100A4 belongs to the family of small calcium-binding S100 proteins that are involved in different cellular processes as transducers of calcium signal. S100A4 modulates properties of tumor cells via interaction with its intracellular targets, heavy chain of non-muscle myosin and p53. Here we report identification of a new molecular target of the S100A4 protein, liprin beta1. Liprin beta1 belongs to the family of leukocyte common antigen-related (LAR) transmembrane tyrosine phosphatase-interacting proteins that may regulate LAR protein properties via interaction with another member of the family, liprin alpha1. We showed by the immunoprecipitation analysis that S100A4 interacts specifically with liprin beta1 in vivo. Immunofluorescence staining demonstrated the co-localization of S100A4 and liprin beta1 in the cytoplasm and particularly at the protrusion sites of the plasma membrane. We mapped the S100A4 binding site at the C terminus of the liprin beta1 molecule between amino acid residues 938 and 1005. The S100A4-binding region contains two putative phosphorylation sites by protein kinase C and protein kinase CK2. S100A4-liprin beta1 interaction resulted in the inhibition of liprin beta1 phosphorylation by both kinases in vitro. Topics: Adaptor Proteins, Signal Transducing; Animals; Binding Sites; Carrier Proteins; Casein Kinase II; Cell Membrane; Cytoplasm; Electrophoresis, Polyacrylamide Gel; Humans; Immunoblotting; Mass Spectrometry; Mice; Microscopy, Fluorescence; Neoplasm Metastasis; Phosphoproteins; Phosphorylation; Plasmids; Precipitin Tests; Protein Binding; Protein Conformation; Protein Kinase C; Protein Serine-Threonine Kinases; Protein Structure, Tertiary; Protein Tyrosine Phosphatases; Receptor-Like Protein Tyrosine Phosphatases, Class 4; Receptors, Cell Surface; Recombinant Proteins; S100 Calcium-Binding Protein A4; S100 Proteins; Tumor Cells, Cultured | 2002 |