casein-kinase-ii and Hypoxia

casein-kinase-ii has been researched along with Hypoxia* in 5 studies

Other Studies

5 other study(ies) available for casein-kinase-ii and Hypoxia

ArticleYear
Long noncoding RNA HIKER regulates erythropoiesis in Monge's disease via CSNK2B.
    The Journal of clinical investigation, 2023, 06-01, Volume: 133, Issue:11

    Excessive erythrocytosis (EE) is a major hallmark of patients suffering from chronic mountain sickness (CMS, also known as Monge's disease) and is responsible for major morbidity and even mortality in early adulthood. We took advantage of unique populations, one living at high altitude (Peru) showing EE, with another population, at the same altitude and region, showing no evidence of EE (non-CMS). Through RNA-Seq, we identified and validated the function of a group of long noncoding RNAs (lncRNAs) that regulate erythropoiesis in Monge's disease, but not in the non-CMS population. Among these lncRNAs is hypoxia induced kinase-mediated erythropoietic regulator (HIKER)/LINC02228, which we showed plays a critical role in erythropoiesis in CMS cells. Under hypoxia, HIKER modulated CSNK2B (the regulatory subunit of casein kinase 2). A downregulation of HIKER downregulated CSNK2B, remarkably reducing erythropoiesis; furthermore, an upregulation of CSNK2B on the background of HIKER downregulation rescued erythropoiesis defects. Pharmacologic inhibition of CSNK2B drastically reduced erythroid colonies, and knockdown of CSNK2B in zebrafish led to a defect in hemoglobinization. We conclude that HIKER regulates erythropoiesis in Monge's disease and acts through at least one specific target, CSNK2B, a casein kinase.

    Topics: Altitude Sickness; Animals; Casein Kinase II; Chronic Disease; Erythropoiesis; Humans; Hypoxia; Polycythemia; RNA, Long Noncoding; Zebrafish

2023
Adenosine Signaling and Clathrin-Mediated Endocytosis of Glutamate AMPA Receptors in Delayed Hypoxic Injury in Rat Hippocampus: Role of Casein Kinase 2.
    Molecular neurobiology, 2021, Volume: 58, Issue:5

    Chronic adenosine A1R stimulation in hypoxia leads to persistent hippocampal synaptic depression, while unopposed adenosine A2AR receptor stimulation during hypoxia/reperfusion triggers adenosine-induced post-hypoxia synaptic potentiation (APSP) and increased neuronal death. Still, the mechanisms responsible for this adenosine-mediated neuronal damage following hypoxia need to be fully elucidated. We tested the hypothesis that A1R and A2AR regulation by protein kinase casein kinase 2 (CK2) and clathrin-dependent endocytosis of AMPARs both contribute to APSPs and neuronal damage. The APSPs following a 20-min hypoxia recorded from CA1 layer of rat hippocampal slices were abolished by A1R and A2AR antagonists and by broad-spectrum AMPAR antagonists. The inhibitor of GluA2 clathrin-mediated endocytosis Tat-GluA2-3Y peptide and the dynamin-dependent endocytosis inhibitor dynasore both significantly inhibited APSPs. The CK2 antagonist DRB also inhibited APSPs and, like hypoxic treatment, caused opposite regulation of A1R and A2AR surface expression. APSPs were abolished when calcium-permeable AMPAR (CP-AMPAR) antagonist (IEM or philanthotoxin) or non-competitive AMPAR antagonist perampanel was applied 5 min after hypoxia. In contrast, perampanel, but not CP-AMPAR antagonists, abolished APSPs when applied during hypoxia/reperfusion. To test for neuronal viability after hypoxia, propidium iodide staining revealed significant neuroprotection of hippocampal CA1 pyramidal neurons when pretreated with Tat-GluA2-3Y peptide, CK2 inhibitors, dynamin inhibitor, CP-AMPAR antagonists (applied 5 min after hypoxia), and perampanel (either at 5 min hypoxia onset or during APSP). These results suggest that the A1R-CK2-A2AR signaling pathway in hypoxia/reperfusion injury model mediates increased hippocampal synaptic transmission and neuronal damage via calcium-permeable AMPARs that can be targeted by perampanel for neuroprotective stroke therapy.

    Topics: Adenosine; Animals; Casein Kinase II; Clathrin; Endocytosis; Excitatory Postsynaptic Potentials; Hippocampus; Hypoxia; Male; Purinergic P1 Receptor Antagonists; Rats; Rats, Sprague-Dawley; Receptors, AMPA; Signal Transduction

2021
Thiazolidinediones prevent PDGF-BB-induced CREB depletion in pulmonary artery smooth muscle cells by preventing upregulation of casein kinase 2 alpha' catalytic subunit.
    Journal of cardiovascular pharmacology, 2010, Volume: 55, Issue:5

    The transcription factor CREB is diminished in smooth muscle cells (SMCs) in remodeled, hypertensive pulmonary arteries (PAs) in animals exposed to chronic hypoxia. Forced depletion of cyclic adenosine monophosphate response element binding protein (CREB) in PA SMCs stimulates their proliferation and migration in vitro. Platelet-derived growth factor (PDGF) produced in the hypoxic PA wall promotes CREB proteasomal degradation in SMCs via phosphatidylinositol-3-kinase/Akt signaling, which promotes phosphorylation of CREB at 2 casein kinase 2 (CK2) sites. Here we tested whether thiazolidinediones, agents that inhibit hypoxia-induced PA remodeling, attenuate SMC CREB loss.. Depletion of CREB and changes in casein kinase 2 catalytic subunit expression and activity were measured in PA SMC treated with PDGF. PA remodeling and changes in medial PA CREB and casein kinase 2 levels were evaluated in lung sections from rats exposed to hypoxia for 21 days.. We found that the thiazolidinedione rosiglitazone prevented PA remodeling and SMC CREB loss in rats exposed to chronic hypoxia. Likewise, the thiazolidinedione troglitazone blocked PA SMC proliferation and CREB depletion induced by PDGF in vitro. Thiazolidinediones did not repress Akt activation by hypoxia in vivo or by PDGF in vitro. However, PDGF-induced CK2 alpha' catalytic subunit expression and activity in PA SMCs, and depletion of CK2 alpha' subunit prevented PDGF-stimulated CREB loss. Troglitazone inhibited PDGF-induced CK2 alpha' subunit expression in vitro and rosiglitazone blocked induction of CK2 catalytic subunit expression by hypoxia in PA SMCs in vivo.. We conclude that thiazolidinediones prevent PA remodeling in part by suppressing upregulation of CK2 and loss of CREB in PA SMCs.

    Topics: Animals; Becaplermin; Blotting, Western; Casein Kinase II; Cell Nucleus; Cell Proliferation; Cells, Cultured; Cyclic AMP Response Element-Binding Protein; Cytosol; Hypertension, Pulmonary; Hypoxia; Male; Microscopy, Fluorescence; Muscle, Smooth, Vascular; Myocytes, Smooth Muscle; Platelet-Derived Growth Factor; PPAR alpha; Proto-Oncogene Proteins c-sis; Pulmonary Artery; Rats; Rats, Inbred WKY; Rosiglitazone; Thiazolidinediones; Up-Regulation

2010
Protein kinase CK2 is a key activator of histone deacetylase in hypoxia-associated tumors.
    International journal of cancer, 2008, Jan-15, Volume: 122, Issue:2

    Increasing evidence points to a link between histone deacetylases (HDACs) and tumorigenesis. Although several HDAC inhibitors have been tested in clinical trials for cancer therapies, the mechanisms of HDAC activation in tumors remain unknown. In this study, we investigated the pathway of HDAC activation in the context of hypoxia and inflammation, common features of solid tumors. In HeLa cells, hypoxia was a more potent activator of HDAC than IL-1beta. As HDAC protein expression did not change during treatment, we hypothesized that hypoxia regulated HDAC activity through post-translational modification. We observed that hypoxia induced HDAC1 and HDAC2 protein phosphorylation both in the presence and absence of IL-1beta. Using TBB, an inhibitor of protein kinase CK2, we showed that CK2 was required for hypoxia-induced HDAC activation. We also observed that CK2 activity was induced by hypoxia but not by IL-1beta alone. While CK2beta subunits were retained in the cytoplasm upon hypoxic treatment, CK2alpha and CK2alpha' subunits were shuttled to the nucleus, where HDAC1 and HDAC2 are predominantly localized. Knockdown of catalytic and regulatory subunits of CK2 revealed that formation of heterotetramic complex was not required for HDAC phosphorylation. von Hippel-Lindau protein (pVHL) inactivation and hypoxia inducible factor-1alpha (HIF-1alpha) activation are associated with tumor growth and vasculogenesis. Use of Apicidin (an HDAC inhibitor) and TBB revealed that CK2-dependent HDAC activation contributed to pVHL downregulation and HIF-1alpha stabilization under hypoxia. Our findings that CK2 may be a key mediator for HDAC activation under hypoxia support the future application of CK2 inhibitors in cancer therapy.

    Topics: Casein Kinase II; Cell Nucleus; Disease Progression; Gene Expression Regulation, Enzymologic; HeLa Cells; Histone Deacetylase 1; Histone Deacetylase 2; Histone Deacetylases; Humans; Hydroxamic Acids; Hypoxia; Interleukin-1beta; Macrophages; Models, Biological; Repressor Proteins; Transfection

2008
Phosphorylation of xanthine dehydrogenase/oxidase in hypoxia.
    The Journal of biological chemistry, 2001, Apr-27, Volume: 276, Issue:17

    The enzyme xanthine oxidase (XO) has been implicated in the pathogenesis of several disease processes, such as ischemia-reperfusion injury, because of its ability to generate reactive oxygen species. The expression of XO and its precursor xanthine dehydrogenase (XDH) is regulated at pre- and posttranslational levels by agents such as lipopolysaccharide and hypoxia. Posttranslational modification of the protein, for example through thiol oxidation or proteolysis, has been shown to be important in converting XDH to XO. The possibility of posttranslational modification of XDH/XO through phosphorylation has not been adequately investigated in mammalian cells, and studies have reported conflicting results. The present report demonstrates that XDH/XO is phosphorylated in rat pulmonary microvascular endothelial cells (RPMEC) and that phosphorylation is greatly increased ( approximately 50-fold) in response to acute hypoxia (4 h). XDH/XO phosphorylation appears to be mediated, at least in part, by casein kinase II and p38 kinase as inhibitors of these kinases partially prevent XDH/XO phosphorylation. In addition, the results indicate that p38 kinase, a stress-activated kinase, becomes activated in response to hypoxia (an approximately 4-fold increase after 1 h of exposure of RPMEC to hypoxia) further supporting a role for this kinase in hypoxia-stimulated XDH/XO phosphorylation. Finally, hypoxia-induced XDH/XO phosphorylation is accompanied by a 2-fold increase in XDH/XO activity, which is prevented by inhibitors of phosphorylation. In summary, this study shows that XDH/XO is phosphorylated in hypoxic RPMEC through a mechanism involving p38 kinase and casein kinase II and that phosphorylation is necessary for hypoxia-induced enzymatic activation.

    Topics: Animals; Arsenites; Blotting, Western; Casein Kinase II; Cells, Cultured; Electrophoresis, Polyacrylamide Gel; Endothelium, Vascular; Enzyme Activation; Enzyme Inhibitors; Hypoxia; Indicators and Reagents; Lung; Mitogen-Activated Protein Kinases; p38 Mitogen-Activated Protein Kinases; Phosphorylation; Precipitin Tests; Protein Processing, Post-Translational; Protein Serine-Threonine Kinases; Rats; Signal Transduction; Sodium Compounds; Sorbitol; Xanthine Dehydrogenase; Xanthine Oxidase

2001