casein-kinase-ii has been researched along with Glioma* in 8 studies
8 other study(ies) available for casein-kinase-ii and Glioma
Article | Year |
---|---|
A Sequentially Priming Phosphorylation Cascade Activates the Gliomagenic Transcription Factor Olig2.
During development of the vertebrate CNS, the basic helix-loop-helix (bHLH) transcription factor Olig2 sustains replication competence of progenitor cells that give rise to neurons and oligodendrocytes. A pathological counterpart of this developmental function is seen in human glioma, wherein Olig2 is required for maintenance of stem-like cells that drive tumor growth. The mitogenic/gliomagenic functions of Olig2 are regulated by phosphorylation of a triple serine motif (S10, S13, and S14) in the amino terminus. Here, we identify a set of three serine/threonine protein kinases (glycogen synthase kinase 3α/β [GSK3α/β], casein kinase 2 [CK2], and cyclin-dependent kinases 1/2 [CDK1/2]) that are, collectively, both necessary and sufficient to phosphorylate the triple serine motif. We show that phosphorylation of the motif itself serves as a template to prime phosphorylation of additional serines and creates a highly charged "acid blob" in the amino terminus of Olig2. Finally, we show that small molecule inhibitors of this forward-feeding phosphorylation cascade have potential as glioma therapeutics. Topics: Animals; Carcinogenesis; Casein Kinase II; Cell Line, Tumor; Cyclin-Dependent Kinases; Disease Models, Animal; Glioma; Glycogen Synthase Kinase 3; Humans; Mice; Oligodendrocyte Transcription Factor 2; Phosphorylation; Phosphoserine; Small Molecule Libraries; Tumor Suppressor Protein p53 | 2017 |
CK2 induced RIG-I drives metabolic adaptations in IFNγ-treated glioma cells.
Given the known anti-tumorigenic properties of IFNγ, its effect on glioma cell survival was investigated. Though IFNγ had no effect on glioma cell viability, it induced cell cycle arrest. This was accompanied by increased expression of p53 and retinoic acid inducible gene (RIG-I). While RIG-I had no effect on glioma cell survival, it increased expression of p53 and its downstream target TP53 induced glycolysis and apoptosis regulator (TIGAR). IFNγ induced mitochondrial co-localization of RIG-I was concomitant with its ability to regulate ROS generation, oxidative phosphorylation (OXPHOS) and key enzymes involved in glycolysis and pentose phosphate pathway. Importantly, metabolic gene profiling indicated a suppressed glycolytic pathway in glioma cells upon IFNγ treatment. In addition, IFNγ mediated increase in casein kinase 2 (CK2) expression positively regulated RIG-I expression. These findings demonstrate how IFNγ induced CK2 regulates RIG-I to drive a complex program of metabolic adaptation and redox homeostasis, crucial for determining glioma cell fate. Topics: Casein Kinase II; Cell Line, Tumor; DEAD Box Protein 58; Glioma; Glycolysis; Humans; Interferon-gamma; Neoplasm Proteins; Oxidative Phosphorylation; Reactive Oxygen Species; Receptors, Immunologic | 2017 |
Protein Kinase CK2 Content in GL261 Mouse Glioblastoma.
Glioblastoma (GBM) is the most prevalent and aggressive human glial tumour with a median survival of 14-15 months. Temozolomide (TMZ) is the standard chemotherapeutic choice for GBM treatment. Unfortunately, chemoresistence always ensues with concomitant tumour regrowth. Protein kinase CK2 (CK2) contributes to tumour development, proliferation, and suppression of apoptosis in cancer and it is overexpressed in human GBM. Targeting CK2 in GBM treatment may benefit patients. With this translational perspective in mind, we have studied the CK2 expression level by Western blot analysis in a preclinical model of GBM: GL261 cells growing orthotopically in C57BL/6 mice. The expression level of the CK2 catalytic subunit (CK2α) was higher in tumour (about 4-fold) and in contralateral brain parenchyma (more than 2-fold) than in normal brain parenchyma (p < 0.05). In contrast, no significant changes were found in CK2 regulatory subunit (CK2β) expression, suggesting an increased unbalance of CK2α/CK2β in GL261 tumours with respect to normal brain parenchyma, in agreement with a differential role of these two subunits in tumours. Topics: Animals; Apoptosis; Brain; Brain Neoplasms; Carcinogenesis; Casein Kinase II; Catalytic Domain; Cell Proliferation; Female; Glioblastoma; Glioma; Humans; Mice; Mice, Inbred C57BL | 2016 |
CK2 inhibition induced PDK4-AMPK axis regulates metabolic adaptation and survival responses in glioma.
Understanding mechanisms that link aberrant metabolic adaptation and pro-survival responses in glioma cells is crucial towards the development of new anti-glioma therapies. As we have previously reported that CK2 is associated with glioma cell survival, we evaluated its involvement in the regulation of glucose metabolism. Inhibition of CK2 increased the expression of metabolic regulators, PDK4 and AMPK along with the key cellular energy sensor CREB. This increase was concomitant with altered metabolic profile as characterized by decreased glucose uptake in a PDK4 and AMPK dependent manner. Increased PDK4 expression was CREB dependent, as exogenous inhibition of CREB functions abrogated CK2 inhibitor mediated increase in PDK4 expression. Interestingly, PDK4 regulated AMPK phosphorylation which in turn affected cell viability in CK2 inhibitor treated glioma cells. CK2 inhibitor 4,5,6,7-Tetrabromobenzotriazole (TBB) significantly retarded the growth of glioma xenografts in athymic nude mouse model. Coherent with the in vitro findings, elevated senescence, pAMPK and PDK4 levels were also observed in TBB-treated xenograft tissue. Taken together, CK2 inhibition in glioma cells drives the PDK4-AMPK axis to affect metabolic profile that has a strong bearing on their survival. Topics: Adenosine Triphosphate; AMP-Activated Protein Kinases; Animals; Brain Neoplasms; Casein Kinase II; Cell Line, Tumor; Cell Proliferation; Cell Survival; Cellular Senescence; Cyclic AMP Response Element-Binding Protein; Glioma; Glucose; Humans; Mice, Nude; Phenotype; Phosphorylation; Protein Serine-Threonine Kinases; Pyruvate Dehydrogenase Acetyl-Transferring Kinase; RNA, Messenger; Signal Transduction; Sirtuin 1; Triazoles; Tumor Suppressor Protein p53; Xenograft Model Antitumor Assays | 2016 |
In vivo siRNA distribution and pharmacokinetics assessed by nuclear imaging are modulated according to radiolabelling site.
RNA interference is efficient in in vitro studies, and appears as a therapeutic tool of major clinical interest. Nevertheless, the clinical utilisation of siRNAs is restrained by the poor availability of biodistribution data on this new class of pharmaceutics. This study aimed at defining the biodistribution and pharmacokinetics properties of an siRNA directed to the Casein Kinase-2 beta (CK2β) subunit, a potential target in cancer therapy.. Four CK2β siRNAs were chemically modified on each extremity of sense or anti-sense strand and radioiodinated. The biodistribution of each entity was analysed in glioblastoma-bearing mice using nuclear imaging and compared to a control GFP siRNA.. The labelling process was associated with preservation of interference activity, except when applied to the 5' antisense terminus. Radioactivity was predominantly observed in organs of the excretory system after intravenous administration: liver, kidneys and bladder. Tumor/Contralateral muscle ratio showed significant differences depending on the labelling site. Activity associated with CK2β5's was quite constant over 2 hours, while CK2β3'as activity decreased by 40% in tumor. Finally, synchrotron X-ray analysis showed that CK2β3's is more abundant in tumor than in liver, brain or muscle, and uniformly distributed between intra- and extracellular compartments.. In this study, we highlighted the large influence of siRNAs radiolabelling position on their biodistribution and pharmacokinetic profiles, and proposed a systematic approach for the imaging of all siRNAs of clinical interest. Topics: Animals; Casein Kinase II; Cell Proliferation; Diagnostic Imaging; Female; Glioma; Humans; Mice; Mice, Nude; Radionuclide Imaging; RNA, Small Interfering; Synchrotrons; Tissue Distribution; Tumor Cells, Cultured; Xenograft Model Antitumor Assays | 2015 |
Reduced phosphorylation of Stat3 at Ser-727 mediated by casein kinase 2 - protein phosphatase 2A enhances Stat3 Tyr-705 induced tumorigenic potential of glioma cells.
Signal transducer and activator of transcription 3 (Stat3) is a transcription factor that is involved in cell survival and proliferation and has been found to be persistently activated in most human cancers mainly through its phosphorylation at Tyr-705. However, the role and regulation of Stat3 Ser-727 phosphorylation in cancer cells have not been clearly evaluated. In our findings, correlation studies on the expression of CK2 and Stat3 Ser-727 phosphorylation levels in human glioma patient samples as well as rat orthotopic tumor model show a degree of negative correlation. Moreover, brain tumor cell lines were treated with various pharmacological inhibitors to inactivate the CK2 pathway. Here, increased Stat3 Ser-727 phosphorylation upon CK2 inhibition was observed. Overexpression of CK2 (α, α' or β subunits) by transient transfection resulted in decreased Stat3 Ser-727 phosphorylation. Stat3 Tyr-705 residue was conversely phosphorylated in similar situations. Interestingly, we found PP2A, a protein phosphatase, to be a mediator in the negative regulation of Stat3 Ser-727 phosphorylation by CK2. In vitro assays prove that Ser-727 phosphorylation of Stat3 affects the transcriptional activity of its downstream targets like SOCS3, bcl-xl and Cyclin D1. Stable cell lines constitutively expressing Stat3 S727A mutant showed increased survival, proliferation and invasion which are characteristics of a cancer cell. Rat tumor models generated with the Stat3 S727A mutant cell line formed more aggressive tumors when compared to the Stat3 WT expressing stable cell line. Thus, in glioma, reduced Stat3 Ser-727 phosphorylation enhances tumorigenicity which may be regulated in part by CK2-PP2A pathway. Topics: Animals; bcl-X Protein; Brain Neoplasms; Casein Kinase II; Cell Line, Tumor; Cell Movement; Cell Transformation, Neoplastic; Cyclin D1; Glioma; HEK293 Cells; Humans; Okadaic Acid; Phosphorylation; Protein Phosphatase 2; Rats; Rats, Sprague-Dawley; Serine; STAT3 Transcription Factor; Suppressor of Cytokine Signaling 3 Protein; Suppressor of Cytokine Signaling Proteins; Transplantation, Heterologous | 2014 |
Casein kinase 2 inhibition modulates the DNA damage response but fails to radiosensitize malignant glioma cells.
Inhibitors of casein kinase 2 (CK2), a regulator of cell proliferation and mediator of the DNA damage response, are being evaluated in clinical trials for the treatment of cancers. Apigenin was capable of inhibiting the activation of CK2 following γ irradiation in LN18 and U87 malignant glioma cells. Apigenin and siRNA-mediated CK2 protein depletion further inhibited NF-κB activation and altered the Tyr68 phosphorylation of Chk2 kinase, a DNA damage response checkpoint kinase, following irradiation. However, CK2 inhibition did not decrease the ability of these glioma cells to repair double-strand DNA breaks, as assessed by COMET assays and γ-H2Ax staining. Likewise, apigenin and siRNA-induced depletion of CK2 failed to sensitize glioma cells to the cytotoxic effect of 2 to 10 G-rays of γ irradiation, as assessed by clonogenic assays. These results contrast with those found in other cancer types, and urge to prudence regarding the inclusion of malignant glioma patients in clinical trials that assess the radiosensitizing role of CK2 inhibitors in solid cancers. Topics: Analysis of Variance; Apigenin; Casein Kinase II; Cell Line, Tumor; Cell Survival; Checkpoint Kinase 2; DNA Damage; DNA Repair; Enzyme Activation; Gene Knockdown Techniques; Glioma; Humans; NF-kappa B; Protein Serine-Threonine Kinases; Radiation Tolerance; Radiation-Sensitizing Agents; RNA Interference; Statistics, Nonparametric | 2012 |
Effects of insulin on protein phosphorylation and protein kinase C activity in human malignant gliomas.
Modulation of protein phosphorylation activities by insulin was investigated in glioma and normal glial cells. Insulin suppressed the in vitro protein phosphorylation of glioma cells in a dose-dependent manner while it stimulated that of meningiomas, neurilemmomas and glial cells. Although gliomas and glial cells contained different species of tyrosyl phosphoproteins before treatment, they expressed similar kinds of tyrosyl phosphoproteins in response to insulin. Insulin increased the activities of casein kinase II and total protein kinase C (PKC) in glioma and normal glial cells. The membrane-bound PKC activity in U373-MG cells was elevated by insulin. The PKC isozymes, including subtypes alpha, beta, delta, epsilon and gamma, were detected in gliomas, but few were found in glial cells. Insulin down regulated the cytosolic PKC-gamma and the membrane-bound PKC-epsilon proteins in gliomas. These results indicate that an altered insulin signaling pathway exists in human gliomas, which might involve differential regulation of PKC isozymes. Topics: Casein Kinase II; Cells, Cultured; Cytosol; Glioma; Humans; Insulin; Isoenzymes; Kinetics; Membranes; Neoplasm Proteins; Nerve Tissue Proteins; Neuroglia; Phosphorylation; Protein Kinase C; Protein Serine-Threonine Kinases; Signal Transduction; Tumor Cells, Cultured | 1998 |