casein-kinase-ii has been researched along with Cystic-Fibrosis* in 8 studies
3 review(s) available for casein-kinase-ii and Cystic-Fibrosis
Article | Year |
---|---|
Protein kinase CK2: a potential therapeutic target for diverse human diseases.
CK2 is a constitutively active Ser/Thr protein kinase, which phosphorylates hundreds of substrates, controls several signaling pathways, and is implicated in a plethora of human diseases. Its best documented role is in cancer, where it regulates practically all malignant hallmarks. Other well-known functions of CK2 are in human infections; in particular, several viruses exploit host cell CK2 for their life cycle. Very recently, also SARS-CoV-2, the virus responsible for the COVID-19 pandemic, has been found to enhance CK2 activity and to induce the phosphorylation of several CK2 substrates (either viral and host proteins). CK2 is also considered an emerging target for neurological diseases, inflammation and autoimmune disorders, diverse ophthalmic pathologies, diabetes, and obesity. In addition, CK2 activity has been associated with cardiovascular diseases, as cardiac ischemia-reperfusion injury, atherosclerosis, and cardiac hypertrophy. The hypothesis of considering CK2 inhibition for cystic fibrosis therapies has been also entertained for many years. Moreover, psychiatric disorders and syndromes due to CK2 mutations have been recently identified. On these bases, CK2 is emerging as an increasingly attractive target in various fields of human medicine, with the advantage that several very specific and effective inhibitors are already available. Here, we review the literature on CK2 implication in different human pathologies and evaluate its potential as a pharmacological target in the light of the most recent findings. Topics: Cardiovascular Diseases; Casein Kinase II; COVID-19; COVID-19 Drug Treatment; Cystic Fibrosis; Eye Diseases; Humans; Mental Disorders; Mutation; Phosphorylation; Protein Kinase Inhibitors; SARS-CoV-2; Signal Transduction | 2021 |
Understanding protein kinase CK2 mis-regulation upon F508del CFTR expression.
We review areas of overlap between nucleoside diphosphate kinase (NDPK; nm23) and two proteins manifesting an equivalent diversity of action, each with many thousands of publications. The first is a constitutively active protein kinase, CK2 (formerly casein kinase 2), that includes NDPK amongst its hundreds of targets. The second is an enigmatic member of the ATP-binding cassette (ABC) family of membrane pumps that normally hydrolyse ATP to transport substrates. Yet our unusual family member (ABCC7) is not a pump but, uniquely, acts as a regulated anion channel. ABCC7 is the cystic fibrosis transmembrane conductance regulator (CFTR), and we discuss the highly prevalent CFTR mutation (F508del CFTR) in terms of the uncertainties surrounding the molecular basis of cystic fibrosis that cloud approaches to corrective therapy. Using lysates from cells stably expressing either wild-type or F508del CFTR, incubated with the CK2 substrate GTP, we show that the phosphoproteome of F508del CFTR-expressing cells both differs from wild-type CFTR-expressing cells and is significantly enhanced in intensity by ∼1.5-fold (p < 0.05, paired t test with Bonferroni correction, n = 4). Phosphorylation is about 50% attenuated with a specific CK2 inhibitor. We propose that a new function may exist for the CFTR region that is commonly mutated, noting that its sequence (PGTIKENIIF(508)GVSYDEYRYR) is not only highly conserved within the C sub-family of ABC proteins but also a related sequence is found in NDPK. We conclude that a latent path may exist between mutation of this conserved sequence, CK2 hyperactivity and disease pathogenesis that might also explain the heterozygote advantage for the common F508del CFTR mutant. Topics: Animals; Blotting, Western; Casein Kinase II; Cell Line, Tumor; Cricetinae; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Electrophoresis, Gel, Two-Dimensional; Humans; NM23 Nucleoside Diphosphate Kinases; Phosphorylation; Signal Transduction; Transfection | 2011 |
Cystic fibrosis as a bowel cancer syndrome and the potential role of CK2.
Chloride is critical in creating differential pH values inside various organelles (Golgi for example) by linking ATP hydrolysis to trans-bilayer proton movement. This proton-ATPase drives anions such as chloride through unrelated channels in the endosomal/organellar bilayer thus loading HCl into different lipid-encased cellular compartments. Critically, intraorganellar pH (and ion channel content/activities) differs during different phases of the cell cycle. The cystic fibrosis (CF) chloride channel protein CFTR is a member of the ABC family (ABCC7) and resides in many endosomal membranes trafficking to the epithelial surface and back again. Recently, it has become clear that human CF has an unusually high incidence of cancer in the bowel with correspondingly elevated gut epithelial proliferation rates observed in CF mice. In this review, emphasis is placed on CK2 & CF because CK2 controls not only proliferation but also four different members of the ABC superfamily including the multi-drug resistance protein P-glycoprotein and CFTR itself. In addition, CK2 also regulates a critical cancer-relevant and CFTR-regulated cation channel (ENaC) that mediates the cellular accumulation of sodium ions within epithelia such as the colon and lung. Not only are ENaC and CFTR both abnormal in CF cells, but ENaC also 'carries' CK2 to the cell membrane in oocytes, only provided its two target phosphosites are intact. CK2 may be a critical regulator of cell proliferation in conjunction with regulation of ion channels such as CFTR, other ABC members and the cation channel ENaC. The emerging idea is that CFTR may control membrane-CK2 as much as membrane-CK2 controls CFTR. Topics: Animals; Casein Kinase II; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Gastrointestinal Neoplasms; Humans; Syndrome | 2008 |
5 other study(ies) available for casein-kinase-ii and Cystic-Fibrosis
Article | Year |
---|---|
Deciphering the role of protein kinase CK2 in the maturation/stability of F508del-CFTR.
F508del-CFTR, the most common mutation in cystic fibrosis (CF) patients, impairs CFTR trafficking to plasma membrane leading to its premature proteasomal degradation. Several post-translational modifications have been identified on CFTR with multiple roles in stability, localization and channel function, and the possibility to control the enzymes responsible of these modifications has been long considered a potential therapeutic strategy. Protein kinase CK2 has been previously suggested as an important player in regulating CFTR functions and it has been proposed as a pharmacological target in a combinatory therapy to treat CF patients. However, the real implication of CK2 in F508del-CFTR proteostasis, and in particular the hypothesis that its inhibition could be important in CF therapies, is still elusive. Here, by using immortalized cell lines, primary human cells, and knockout cell lines deprived of CK2 subunits, we do not disclose any direct correlation between F508del-CFTR proteostasis and CK2 expression/activity. Rather, our data indicate that the CK2α' catalytic subunit should be preserved rather than inhibited for F508del rescue by the correctors of class-1, such as VX-809, disclosing new important features in CF therapeutic approaches. Topics: Casein Kinase II; Cell Line; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Humans; Protein Subunits | 2020 |
A "SYDE" effect of hierarchical phosphorylation: possible relevance to the cystic fibrosis basic defect.
The motif "SYDE", incorporating the protein kinase CK2 consensus sequence (S-x-x-E) has been found to be phosphorylated at both its serine and tyrosine residues in several proteins. Of special interest is the case of cystic fibrosis Transmembrane-conductance Regulator (CFTR), where this motif is close to the residue (F508), whose deletion is the by far commonest cause of cystic fibrosis. Intriguingly, however, CFTR S511 cannot be phosphorylated by CK2 to any appreciable extent. Using a number of peptide substrates encompassing the CFTR "SYDE" site we have recently shown that: (1) failure of CK2 to phosphorylate the S(511)YDE motif is due to the presence of Y512; (2) CK2 readily phosphorylates S511 if Y512 is replaced by a phospho-tyrosine; (3) the Src family protein tyrosine kinase Lyn phosphorylates Y512 in a manner that is enhanced by the deletion of F508. These data, in conjunction with the recent observation that by inhibiting CK2 the degradation of F508delCFTR is reduced, lead us to hypothesize that the hierarchical phosphorylation of the motif SYDE by the concerted action of protein tyrosine kinases and CK2 is one of the mechanisms that cooperate to the premature degradation of F508delCFTR. Topics: Amino Acid Sequence; Aspartic Acid; Casein Kinase II; Consensus Sequence; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Dictyostelium; Glutamic Acid; Humans; Molecular Sequence Data; Phosphorylation; Protein Interaction Domains and Motifs; Serine; Tyrosine | 2014 |
Inhibition of protein kinase CK2 closes the CFTR Cl channel, but has no effect on the cystic fibrosis mutant deltaF508-CFTR.
Deletion of phenylalanine-508 (DeltaF508) from the first nucleotide-binding domain (NBD1) in the wild-type cystic fibrosis (CF) transmembrane-conductance regulator (wtCFTR) causes CF. However, the mechanistic relationship between DeltaF508-CFTR and the diversity of CF disease is unexplained. The surface location of F508 on NBD1 creates the potential for protein-protein interactions and nearby, lies a consensus sequence (SYDE) reported to control the pleiotropic protein kinase CK2.. Electrophysiology, immunofluorescence and biochemistry applied to CFTR-expressing cells, Xenopus oocytes, pancreatic ducts and patient biopsies.. Irrespective of PKA activation, CK2 inhibition (ducts, oocytes, cells) attenuates CFTR-dependent Cl(-) transport, closing wtCFTR in cell-attached membrane patches. CK2 and wtCFTR co-precipitate and CK2 co-localized with wtCFTR (but not DeltaF508-CFTR) in apical membranes of human airway biopsies. Comparing wild-type and DeltaF508CFTR expressing oocytes, only DeltaF508-CFTR Cl(-) currents were insensitive to two CK2 inhibitors. Furthermore, wtCFTR was inhibited by injecting a peptide mimicking the F508 region, whereas the DeltaF508-equivalent peptide had no effect.. CK2 controls wtCFTR, but not DeltaF508-CFTR. Others find that peptides from the F508 region of NBD1 allosterically control CK2, acting through F508. Hence, disruption of CK2-CFTR interaction by DeltaF508-CFTR might disrupt multiple, membrane-associated, CK2-dependent pathways, creating a new molecular disease paradigm for deleted F508 in CFTR. Topics: Allosteric Regulation; Amino Acid Sequence; Animals; Biological Transport; Casein Kinase II; Cell Line; Chloride Channels; Cricetinae; Cyclic AMP; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Electrophysiological Phenomena; Guinea Pigs; Humans; Immunoprecipitation; Molecular Sequence Data; Mutation; Oocytes; Protein Interaction Domains and Motifs; Xenopus | 2009 |
Modulation of protein kinase CK2 activity by fragments of CFTR encompassing F508 may reflect functional links with cystic fibrosis pathogenesis.
Deletion of F508 in the first nucleotide binding domain (NBD1) of cystic fibrosis transmembrane conductance regulator protein (CFTR) is the commonest cause of cystic fibrosis (CF). Functional interactions between CFTR and CK2, a highly pleiotropic protein kinase, have been recently described which are perturbed by the F508 deletion. Here we show that both NBD1 wild type and NBD1 DeltaF508 are phosphorylated in vitro by CK2 catalytic alpha-subunit but not by CK2 holoenzyme unless polylysine is added. MS analysis reveals that, in both NBD1 wild type and DeltaF508, the phosphorylated residues are S422 and S670, while phosphorylation of S511 could not be detected. Accordingly, peptides encompassing the 500-518 sequence of CFTR are not phosphorylated by CK2; rather they inhibit CK2alpha catalytic activity in a manner which is not competitive with respect to the specific CK2 peptide substrate. In contrast, 500-518 peptides promote the phosphorylation of NBD1 by CK2 holoenzyme overcoming inhibition by the beta-subunit. Such a stimulatory efficacy of the CFTR 500-518 peptide is dramatically enhanced by deletion of F508 and is abolished by deletion of the II507 doublet. Kinetics of NBD1 phosphorylation by CK2 holoenzyme, but not by CK2alpha, display a sigmoid shape denoting a positive cooperativity which is dramatically enhanced by the addition of the DeltaF508 CFTR peptide. SPR analysis shows that NBD1 DeltaF508 interacts more tightly than NBD1 wt with the alpha-subunit of CK2 and that CFTR peptides which are able to trigger NBD1 phosphorylation by CK2 holoenzyme also perturb the interaction between the alpha- and the beta-subunits of CK2. Topics: Amino Acid Sequence; Animals; Casein Kinase II; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Electrophoresis, Polyacrylamide Gel; Enzyme Activation; Humans; Mass Spectrometry; Molecular Sequence Data; Phosphopeptides; Phosphorylation; Polylysine; Protein Binding; Sequence Homology, Amino Acid | 2008 |
Protein kinase CK2, cystic fibrosis transmembrane conductance regulator, and the deltaF508 mutation: F508 deletion disrupts a kinase-binding site.
Deletion of phenylalanine 508 (DeltaF508) from the first nucleotide-binding domain (NBD1) of the cystic fibrosis transmembrane conductance regulator (CFTR) is the most common mutation in cystic fibrosis. The F508 region lies within a surface-exposed loop that has not been assigned any interaction with associated proteins. Here we demonstrate that the pleiotropic protein kinase CK2 that controls protein trafficking, cell proliferation, and development binds wild-type CFTR near F508 and phosphorylates NBD1 at Ser-511 in vivo and that mutation of Ser-511 disrupts CFTR channel gating. Importantly, the interaction of CK2 with NBD1 is selectively abrogated by the DeltaF508 mutation without disrupting four established CFTR-associated kinases and two phosphatases. Loss of CK2 association is functionally corroborated by the insensitivity of DeltaF508-CFTR to CK2 inhibition, the absence of CK2 activity in DeltaF508 CFTR-expressing cell membranes, and inhibition of CFTR channel activity by a peptide that mimics the F508 region of CFTR (but not the equivalent DeltaF508 peptide). Disruption of this CK2-CFTR association is the first described DeltaF508-dependent protein-protein interaction that provides a new molecular paradigm in the most frequent form of cystic fibrosis. Topics: Animals; Casein Kinase II; Cell Line, Tumor; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Humans; Phosphorylation; Point Mutation; Protein Binding; Protein Processing, Post-Translational; Protein Transport; Xenopus laevis | 2007 |