caryophyllene has been researched along with Myocardial-Infarction* in 6 studies
6 other study(ies) available for caryophyllene and Myocardial-Infarction
Article | Year |
---|---|
Protective effects of β-caryophyllene on mitochondrial damage and cardiac hypertrophy pathways in isoproterenol-induced myocardial infarcted rats.
The cardiac mitochondrial damage and cardiac hypertrophy pathways are intimately associated with the pathology of myocardial infarction (MI). The protective effects of β-caryophyllene on mitochondrial damage and cardiac hypertrophy pathways in isoproterenol-induced myocardial infarcted rats were investigated. Isoproterenol (100 mg/kg body weight) was administered to induce MI. The ST-segment, QT interval, and T wave were widened, and the QRS complex and P wave were shortened in the electrocardiogram (ECG) and the serum cardiac diagnostic markers and heart mitochondrial lipid peroxidation products, calcium ions, and reactive oxygen species (ROS) were elevated and the heart mitochondrial antioxidants, tricarboxylic acid cycle, and respiratory chain enzymes were lessened in isoproterenol-induced myocardial infarcted rats. The heart mitochondrial damage was noted in the transmission electron microscopic study. The whole heart weight was increased and the subunits of nicotinamide adenine dinucleotide phosphate - oxidase 2 (Nox 2) genes such as cybb and p22-phox and cardiac hypertrophy genes such as atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), β -myosin heavy chain (β-MHC), and actin alpha skeletal muscle-1(ACTA-1) were highly expressed in the rat's heart by reverse transcription-polymerase chain reaction study. The β-caryophyllene (20 mg/kg body weight) pre- and co-treatment orally, daily for 21 days reversed changes in ECG and lessened cardiac diagnostic markers, ROS, and whole heart weight and ameliorated mitochondrial damage and Nox/ANP/BNP/β-MHC/ACTA-1cardiac hypertrophy pathways in isoproterenol-induced myocardial infarcted rats. The observed effects might be due to the antioxidant, anti-mitochondrial damaging, and anti-cardiac hypertrophic mechanisms of β-caryophyllene. Topics: Animals; Antioxidants; Biomarkers; Body Weight; Cardiomegaly; Isoproterenol; Mitochondria, Heart; Myocardial Infarction; Rats; Rats, Wistar; Reactive Oxygen Species | 2023 |
β-caryophyllene blocks reactive oxygen species-mediated hyperlipidemia in isoproterenol-induced myocardial infarcted rats.
Myocardial infarction (MI) is a leading cause of death. Lipid-lowering interventions have been shown to decrease coronary events and mortality of MI and heart failure. In this investigation, we assessed the anti-hyperlipidemic effects of β-caryophyllene in isoproterenol-induced myocardial infarcted rats. β-Caryophyllene (20 mg/kg body weight) pre-and co-treatment was given to rats orally, daily, for 3 weeks. Isoproterenol (100 mg/kg body weight) was administered to rats to induce MI. The levels of serum cardiac troponins T and I, serum and heart total cholesterol, triglycerides, free fatty acids, and the levels of serum low-density and very low-density lipoprotein-cholesterols were augmented, and the level of serum high-density lipoprotein-cholesterol was lessened in myocardial infarcted rats. Further, the activity/levels of liver 3-hydroxy-3-methylglutaryl-coenzyme A reductase and plasma thiobarbituric acid reactive substances were amplified and the activity/levels of heart glutathione -S- transferase, vitamin C, and vitamin E were lessened by isoproterenol. A down-regulated expression of liver sterol regulatory element-binding protein-2 and liver low-density lipoprotein-receptor genes was observed by a reverse transcription-polymerase chain reaction study. Moreover, histopathology of Sudan III staining revealed an accumulation of fats in the heart of isoproterenol-induced rats. Nevertheless, β-caryophyllene pre-and co-treatment blocked alterations in all the parameters examined in isoproterenol-induced rats and inhibited the risk of MI. Moreover, the in vitro study revealed the potent free radical scavenging and antioxidant effects of β-caryophyllene. β-Caryophyllene's antioxidant and anti-hyperlipidemic properties are the possible mechanisms for the observed protective effects in this investigation. Topics: Animals; Antioxidants; Body Weight; Cholesterol; Hyperlipidemias; Isoproterenol; Lipoproteins, LDL; Myocardial Infarction; Myocardium; Rats; Rats, Wistar; Reactive Oxygen Species | 2023 |
β-caryophyllene modulates B-cell lymphoma gene-2 family genes and inhibits the intrinsic pathway of apoptosis in isoproterenol-induced myocardial infarcted rats; A molecular mechanism.
Myocardial infarction (MI) is one of the top causes of morbidity and mortality in the world. Prevention/treatment of MI is of utmost importance. This study planned to appraise the molecular mechanisms of β-caryophyllene on the intrinsic pathway of cardiomyocyte apoptosis in isoproterenol-induced myocardial infarcted rats. Rats were induced MI by isoproterenol (100 mg/kg body weight). The serum cardiac diagnostic markers, heart lipid hydroperoxides, heart lysosomal thiobarbituric acid reactive substances, and serum/heart lysosomal enzymes were considerably (P < 0.05) augmented, while heart antioxidants, heart lysosomal β-glucuronidase and cathepsin-D were considerably (P < 0.05) lessened in isoproterenol-induced myocardial infarcted rats. A reverse transcription-polymerase chain reaction study revealed altered expressions of B-cell lymphoma gene-2, B-cell lymphoma - extra-large, B-cell lymphoma-2 associated-x, and B-cell lymphoma-2 associated death promoter genes. Further, transmission electron microscopic study depicted damaged heart lysosomal structure. Histological study revealed mononuclear cell infiltration and congested dilated blood capillaries in between affected cardiac muscle fibres. Further, 2,3,5-triphenyl tetrazolium chloride staining showed a larger myocardial infarct size. The β-caryophyllene (20 mg/kg body weight) pre-and co-treatment orally, daily, for 21 days considerably (P < 0.05) ameliorated all these altered biochemical, transmission electron microscopic, molecular and histological parameters evaluated in myocardial infarcted rats. Thus, β-caryophyllene inhibited oxidative stress and lysosomal leakage, preserved the heart, and heart lysosomal structure, and prevented the intrinsic pathway of apoptosis. Moreover, it reduced infarct size. The antioxidant effects of β-caryophyllene are the possible mechanism for the observed anti-oxidative stress, anti-lysosomal damage, anti-apoptotic, and myocardial infarct size limiting effects. Topics: Animals; Antioxidants; Apoptosis; Body Weight; Chlorides; Glucuronidase; Isoproterenol; Lipid Peroxides; Lymphoma, B-Cell; Myocardial Infarction; Myocardium; Myocytes, Cardiac; Polycyclic Sesquiterpenes; Proto-Oncogene Proteins c-bcl-2; Rats; Rats, Wistar; Thiobarbituric Acid Reactive Substances | 2022 |
β-Caryophyllene inhibits Fas- receptor and caspase-mediated apoptosis signaling pathway and endothelial dysfunction in experimental myocardial infarction.
We planned to appraise the effects of β-caryophyllene on Fas- receptor and caspase-mediated apoptosis signaling pathway and endothelial dysfunction in rats infarcted with isoproterenol. Rats were induced myocardial infarction by using isoproterenol (100 mg/kg body weight [b.w]). Serum creatine kinase-MB, serum cardiac troponin-T, heart weight, heart rate, and heart lipid peroxidation were greatly (p < 0.05) augmented, while heart enzymatic antioxidants and plasma nonenzymatic antioxidants were greatly (p < 0.05) lessened in isoproterenol-treated rats. Reverse transcription-polymerase chain reaction study revealed augmented expressions of Fas-receptor and caspases 8, 9, and 3 genes in myocardial infarcted rats. Furthermore, iNOS protein expression was amplified and eNOS protein was lessened in the myocardial infarcted heart. Three weeks pre- and cotreatment with β-caryophyllene (20 mg/kg b.w) greatly (p < 0.05) protected isoproterenol-treated rats against these altered structural, biochemical, molecular, and immunohistochemical parameters, by its anti-cardiac hypertrophic, anti-tachycardial, antioxidant, anti-apoptotic, and anti-endothelial dysfunction effects. In conclusion, these findings projected the use of β-caryophyllene for the therapy of human myocardial infarction after clinical trials. Topics: Animals; Antioxidants; Apoptosis; Biomarkers; Caspase Inhibitors; Caspases; Creatine Kinase, MB Form; Dose-Response Relationship, Drug; Endothelium, Vascular; fas Receptor; Heart Rate; Male; Myocardial Infarction; Myocardium; Nitric Oxide Synthase Type II; Nitric Oxide Synthase Type III; Organ Size; Oxidative Stress; Polycyclic Sesquiterpenes; Rats; Rats, Wistar; Signal Transduction | 2021 |
β-Caryophyllene, a natural bicyclic sesquiterpene attenuates β-adrenergic agonist-induced myocardial injury in a cannabinoid receptor-2 dependent and independent manner.
The downregulation of cannabinoid type-2 receptors (CB2R) have been reported in numerous diseases including cardiovascular diseases (CVDs). The activation of CB2R has recently emerged as an important therapeutic target to mitigate myocardial injury. We examined whether CB2R activation can protect against isoproterenol (ISO)-induced myocardial injury (MI) in rats. In the present study, we investigated the cardioprotective effect of β-caryophyllene (BCP), a naturally occurring dietary cannabinoid in rat model of MI. Rats were pre- and co-treated with BCP (50 mg/kg, orally) twice daily for 10 days along with subcutaneous injection of ISO (85 mg/kg) at an interval of 24 h for two days (9th and 10th days). AM630 (1 mg/kg), a CB2 receptor antagonist, was injected intraperitoneal as a pharmacological challenge prior to BCP treatment to reveal CB2R-mediated cardioprotective mechanisms of BCP. Desensitization of beta-adrenergic receptor (β-AR) signaling, receptor phosphorylation and recruitment of adapter β-arrestins were observed in ISO-induced MI in rats. ISO injections caused impaired cardiac function, elevated the levels of serum cardiac marker enzymes, and enhanced oxidative stress markers along with altered PI3K/Akt and NrF2/Keap1/HO-1 signaling pathways. ISO also promoted lysosomal dysfunction along with activation of NLRP3 inflammasomes and TLR4-NFκB/MAPK signaling and triggered rise in proinflammatory cytokines. There was a concomitant mitochondrial dysfunction followed by the activation of endoplasmic reticulum (ER) stress-mediated Hippo signaling and intrinsic pathway of apoptosis as well as altered autophagic flux/mTOR signaling in ISO-induced MI. Furthermore, ISO also triggered dyslipidemia evidenced by altered lipids, lipoproteins and lipid marker enzymes along with ionic homeostasis malfunction. However, treatment with BCP resulted in significant protective effects on all biochemical and molecular parameters analyzed. The cardioprotective effects were further strengthened by preservation of cardiomyocytes and cell organelles as observed in histopathological and ultrastructural studies. Interestingly, treatment with AM630, a CB2R antagonist was observed to abrogate the protective effects of BCP on the biochemical and molecular parameters except hyperlipidemia and ionic homeostasis in ISO-induced MI in rats. The present study findings demonstrate that BCP possess the potential to protect myocardium against ISO-induced MI in a CB2-dependent and indepen Topics: Adrenergic beta-Agonists; Animals; Kelch-Like ECH-Associated Protein 1; Myocardial Infarction; NF-E2-Related Factor 2; Phosphatidylinositol 3-Kinases; Polycyclic Sesquiterpenes; Rats; Rats, Wistar; Receptors, Cannabinoid; Sesquiterpenes | 2021 |
β-Caryophyllene as a Potential Protective Agent Against Myocardial Injury: The Role of Toll-Like Receptors.
Myocardial infarction (MI) remains one of the major causes of mortality around the world. A possible mechanism involved in myocardial infarction is the engagement of Toll-like receptors (TLRs). This study was intended to discover the prospective cardioprotective actions of β-caryophyllene, a natural sesquiterpene, to ameliorate isoproterenol (ISO)-induced myocardial infarction through HSP-60/TLR/MyD88/NFκB pathway. β-Caryophyllene (100 or 200 mg/kg/day orally) was administered for 21 days then MI was induced via ISO (85 mg/kg, subcutaneous) on 20th and 21st days. The results indicated that ISO induced a significant infarcted area associated with several alterations in the electrocardiogram (ECG) and blood pressure (BP) indices and caused an increase in numerous cardiac indicators such as creatine phosphokinase (CPK), creatine kinase-myocardial bound (CK-MB), lactate dehydrogenase (LDH), and cardiac tropinine T (cTnT). In addition, ISO significantly amplified heat shock protein 60 (HSP-60) and other inflammatory markers, such as TNF-α, IL-Iβ, and NFκB, and affected TLR2 and TLR4 expression and their adaptor proteins; Myeloid differentiation primary response 88 (MYD88), and TIR-domain-containing adapter-inducing interferon-β (TRIF). On the other hand, consumption of β-caryophyllene significantly reversed the infarcted size, ECG and BP alterations, ameliorated the ISO elevation in cardiac indicators; it also notably diminished HSP-60, and subsequently TLR2, TLR4, MYD88, and TRIF expression, with a substantial reduction in inflammatory mediator levels. This study revealed the cardioprotective effect of β-caryophyllene against MI through inhibiting HSP-60/TLR/MyD88/NFκB signaling pathways. Topics: Adaptor Proteins, Signal Transducing; Animals; Biological Products; Blood Pressure; Creatine Kinase; Electrocardiography; Isoproterenol; L-Lactate Dehydrogenase; Male; Membrane Glycoproteins; Myeloid Differentiation Factor 88; Myocardial Infarction; NF-kappa B; Polycyclic Sesquiterpenes; Protective Agents; Rats, Sprague-Dawley; Sesquiterpenes; Toll-Like Receptors | 2019 |