carnosol has been researched along with Osteoarthritis* in 2 studies
2 other study(ies) available for carnosol and Osteoarthritis
Article | Year |
---|---|
Carnosol and Related Substances Modulate Chemokine and Cytokine Production in Macrophages and Chondrocytes.
Phenolic diterpenes present in Rosmarinus officinalis and Salvia officinalis have anti-inflammatory and chemoprotective effects. We investigated the in vitro effects of carnosol (CL), carnosic acid (CA), carnosic acid-12-methylether (CAME), 20-deoxocarnosol and abieta-8,11,13-triene-11,12,20-triol (ABTT) in murine macrophages (RAW264.7 cells) and human chondrocytes. The substances concentration-dependently reduced nitric oxide (NO) and prostaglandin E₂ (PGE₂) production in LPS-stimulated macrophages (i.e., acute inflammation). They significantly blunted gene expression levels of iNOS, cytokines/interleukins (IL-1α, IL-6) and chemokines including CCL5/RANTES, CXCL10/IP-10. The substances modulated the expression of catabolic and anabolic genes in chondrosarcoma cell line SW1353 and in primary human chondrocytes that were stimulated by IL-1β (i.e., chronic inflammation In SW1353, catabolic genes like MMP-13 and ADAMTS-4 that contribute to cartilage erosion were down-regulated, while expression of anabolic genes including Col2A1 and aggrecan were shifted towards pre-pathophysiological homeostasis. CL had the strongest overall effect on inflammatory mediators, as well as on macrophage and chondrocyte gene expression. Conversely, CAME mainly affected catabolic gene expression, whereas ABTT had a more selectively altered interleukin and chemokine gene exprssion. CL inhibited the IL-1β induced nuclear translocation of NF-κBp65, suggesting that it primarily regulated via the NF-κB signalling pathway. Collectively, CL had the strongest effects on inflammatory mediators and chondrocyte gene expression. The data show that the phenolic diterpenes altered activity pattern of genes that regulate acute and chronic inflammatory processes. Since the substances affected catabolic and anabolic gene expression in cartilage cells in vitro, they may beneficially act on the aetiology of osteoarthritis. Topics: Abietanes; Animals; Chemokine CCL5; Chemokines; Chondrocytes; Collagen Type II; Cytokines; Gene Expression Regulation; Humans; Interleukin-1beta; Macrophages; Mice; NF-kappa B; Nitric Oxide; Osteoarthritis; Phenanthrenes; RAW 264.7 Cells | 2016 |
Carnosol Inhibits Pro-Inflammatory and Catabolic Mediators of Cartilage Breakdown in Human Osteoarthritic Chondrocytes and Mediates Cross-Talk between Subchondral Bone Osteoblasts and Chondrocytes.
The aim of this work was to evaluate the effects of carnosol, a rosemary polyphenol, on pro-inflammatory and catabolic mediators of cartilage breakdown in chondrocytes and via bone-cartilage crosstalk.. Osteoarthritic (OA) human chondrocytes were cultured in alginate beads for 4 days in presence or absence of carnosol (6 nM to 9 μM). The production of aggrecan, matrix metalloproteinase (MMP)-3, tissue inhibitor of metalloproteinase (TIMP)-1, interleukin (IL)-6 and nitric oxide (NO) and the expression of type II collagen and ADAMTS-4 and -5 were analyzed. Human osteoblasts from sclerotic (SC) or non-sclerotic (NSC) subchondral bone were cultured for 3 days in presence or absence of carnosol before co-culture with chondrocytes. Chondrocyte gene expression was analyzed after 4 days of co-culture.. In chondrocytes, type II collagen expression was significantly enhanced in the presence of 3 μM carnosol (p = 0.008). MMP-3, IL-6, NO production and ADAMTS-4 expression were down-regulated in a concentration-dependent manner by carnosol (p<0.01). TIMP-1 production was slightly increased at 3 μM (p = 0.02) and ADAMTS-5 expression was decreased from 0.2 to 9 μM carnosol (p<0.05). IL-6 and PGE2 production was reduced in the presence of carnosol in both SC and NSC osteoblasts while alkaline phosphatase activity was not changed. In co-culture experiments preincubation of NSC and SC osteoblasts wih carnosol resulted in similar effects to incubation with anti-IL-6 antibody, namely a significant increase in aggrecan and decrease in MMP-3, ADAMTS-4 and -5 gene expression by chondrocytes.. Carnosol showed potent inhibition of pro-inflammatory and catabolic mediators of cartilage breakdown in chondrocytes. Inhibition of matrix degradation and enhancement of formation was observed in chondrocytes cocultured with subchondral osteoblasts preincubated with carnosol indicating a cross-talk between these two cellular compartments, potentially mediated via inhibition of IL-6 in osteoblasts as similar results were obtained with anti-IL-6 antibody. Topics: Abietanes; Aggrecans; Anti-Inflammatory Agents; Cell Survival; Cells, Cultured; Chondrocytes; Coculture Techniques; Dinoprostone; Humans; Interleukin-6; Matrix Metalloproteinase 3; Osteoarthritis; Osteoblasts; Tissue Inhibitor of Metalloproteinase-1 | 2015 |