carnosol has been researched along with Metabolic-Diseases* in 2 studies
2 other study(ies) available for carnosol and Metabolic-Diseases
Article | Year |
---|---|
Plant-Derived Polyphenols Modulate Human Dendritic Cell Metabolism and Immune Function via AMPK-Dependent Induction of Heme Oxygenase-1.
Polyphenols are important immunonutrients which have been investigated in the context of inflammatory and autoimmune disease due to their significant immunosuppressive properties. However, the mechanism of action of many polyphenols is unclear, particularly in human immune cells. The emerging field of immunometabolism has highlighted the significance of metabolic function in the regulation of immune cell activity, yet the effects of polyphenols on immune cell metabolic signaling and function has not been explored. We have investigated the effects of two plant-derived polyphenols, carnosol and curcumin, on the metabolism of primary human dendritic cells (DC). We report that human DC display an increase in glycolysis and spare respiratory capacity in response to LPS stimulation, which was attenuated by both carnosol and curcumin treatment. The regulation of DC metabolism by these polyphenols appeared to be mediated by their activation of the cellular energy sensor, AMP-activated Protein Kinase (AMPK), which resulted in the inhibition of mTOR signaling in LPS-stimulated DC. Previously we have reported that both carnosol and curcumin can regulate the maturation and function of human DC through upregulation of the immunomodulatory enzyme, Heme Oxygenase-1 (HO-1). Here we also demonstrate that the induction of HO-1 by polyphenols in human DC is dependent on their activation of AMPK. Moreover, pharmacological inhibition of AMPK was found to reverse the observed reduction of DC maturation by carnosol and curcumin. This study therefore describes a novel relationship between metabolic signaling via AMPK and HO-1 induction by carnosol and curcumin in human DC, and characterizes the effects of these polyphenols on DC immunometabolism for the first time. These results expand our understanding of the mechanism of action of carnosol and curcumin in human immune cells, and suggest that polyphenol supplementation may be useful to regulate the metabolism and function of immune cells in inflammatory and metabolic disease. Topics: Abietanes; AMP-Activated Protein Kinases; Cells, Cultured; Curcumin; Dendritic Cells; Heme Oxygenase-1; Humans; Immune System Phenomena; Inflammation; Metabolic Diseases; Polyphenols; Signal Transduction; TOR Serine-Threonine Kinases; Up-Regulation | 2019 |
A carnosine analog with therapeutic potentials in the treatment of disorders related to oxidative stress.
Interactive relationships among metabolism, mitochondrial dysfunction and inflammation at skeletal muscle level play a key role in the pathogenesis of disorders related to oxidative stress. Mitochondrial dysfunction and oxidative stress result in cellular energy deficiency, inflammation and cell death inducing a vicious cycle that promotes muscle wasting. The histidine-containing dipeptides, carnosine and anserine, are carbonyl scavengers whose cytoprotective contributions extend beyond the antioxidant defence, but the physiological meaning of these capacities is actually limited. In the present study, we compared and investigated the potential protective effects of three different histidine-containing dipeptides: carnosine, anserine and carnosinol, a carnosine-mimetic new compound, against oxidative stress induction in rat L6 skeletal muscle cells. The hydrogen peroxide induced-oxidative stress significantly altered cell morphology, induced apoptosis, oxidative stress and inflammation, decreased mitochondrial peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α)/sirtuin3 pathway and the antioxidant system. Notably, all three investigated dipeptides in the present study, with a different extent and in a concentration-dependent manner, reduced myotube oxidative stress, apoptosis and inflammation. The present study underlined that carnosinol, maintaining the safety condition of carnosine and anserine, was the more efficient studied dipeptide in the preservation of mitochondrial environment mediated by PGC-1α and sirtuin3 expression and thereby in the reduction of oxidative stress-related alterations in this in vitro skeletal muscle model. Furthermore, we observed that carnosinol's antioxidant effects are not blocked inhibiting sirtuin3, but are maintained with almost the same extend, indicating its multiple capacities of reactive carbonyl species-scavenging and of mitochondrial modulation through PGC-1α. In conclusion, carnosinol retained and surpassed the efficacy of the well-known investigated histidine-containing dipeptides improving oxidative stress, inflammation and also cell metabolism and so becoming a greatly promising therapeutic carnosine derivate. Topics: Abietanes; Animals; Anserine; Antioxidants; Apoptosis; Carnosine; Cell Line; Cell Survival; Inflammation; Metabolic Diseases; Microscopy, Electron, Scanning; Models, Biological; Muscle Fibers, Skeletal; Oxidative Stress; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha; Rats; Sirtuins; Superoxide Dismutase | 2019 |