carnosol has been researched along with Cognitive-Dysfunction* in 2 studies
2 other study(ies) available for carnosol and Cognitive-Dysfunction
Article | Year |
---|---|
Carnosol alleviates sevoflurane-induced cognitive dysfunction by mediating NF-κB pathway in aged rats.
Postoperative Cognitive Dysfunction (POCD) is a neurological disorder of unconsciousness due to cognitive regression after surgical anesthesia. However, the specific mechanism has not yet been clarified. Sevoflurane (SEV) is one of the most commonly used anesthetics in clinical practice, and how SEV mediates the generation of POCD is unclear. Carnosol, a natural ingredient, has been reported to have various beneficial effects such as anti-inflammatory, immune enhancement, and so forth, but how it ameliorates SEV-mediated neurotoxicity remains unclear. This study aimed to induce a POCD model in aged rats by SEV and to elucidate how Carnosol ameliorated SEV-mediated neurotoxicity. The effects of Carnosol on the expression of inflammatory factors in rat hippocampus mediated by SEV were determined by enzyme-linked immunoassay and polymerase chain reaction experiments; the effects of Carnosol on the expressions of Iba-1 and glial fibrillary acidic protein after SEV-mediated activation of rat microglia were clarified by immunofluorescence and Western blotting (WB); The effects of Carnosol on SEV-mediated neuronal apoptosis were studied by terminal deoxynucleotidyl transferase dUTP nick end labeling and WB; the specific signaling pathways regulated by Carnosol were elucidated by WB. The results showed that Carnosol can improve the cognitive dysfunction and reduce neuroinflammation in aged rats induced by SEV; Carnosol can reduce the activation of microglia and inhibit neuronal apoptosis in aged rats induced by SEV; Carnosol can phosphorylate p65 and nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha regulates the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway. Carnosol can attenuate SEV-induced neuroinflammation, prevent microglial activation and inhibit neuronal apoptosis by modulating the NF-κB pathway. Topics: Abietanes; Animals; Apoptosis; Cognitive Dysfunction; NF-kappa B; Rats; Rats, Sprague-Dawley; Sevoflurane | 2022 |
Carnosol Reduced Pathogenic Protein Aggregation and Cognitive Impairment in Neurodegenerative Diseases Models via Improving Proteostasis and Ameliorating Mitochondrial Disorders.
Neurodegenerative diseases (NDs) such as Alzheimer's disease, Parkinson's disease, and Huntington's disease are incurable diseases with progressive loss of neural function and require urgent development of effective treatments. Carnosol (CL) reportedly has a pharmacological effect in the prevention of dementia. Nevertheless, the mechanisms of CL's neuroprotection are not entirely clear. The present study aimed to investigate the effects and mechanisms of CL-mediated neuroprotection through Topics: Abietanes; Animals; Caenorhabditis elegans; Caenorhabditis elegans Proteins; Cognitive Dysfunction; Humans; Mitochondrial Diseases; Neurodegenerative Diseases; Protein Aggregates; Proteostasis; Vesicular Acetylcholine Transport Proteins | 2022 |