carnosol has been researched along with Adenoma* in 1 studies
1 other study(ies) available for carnosol and Adenoma
Article | Year |
---|---|
Carnosol inhibits beta-catenin tyrosine phosphorylation and prevents adenoma formation in the C57BL/6J/Min/+ (Min/+) mouse.
Carnosol, a constituent of the herb, rosemary, has shown beneficial medicinal and antitumor effects. Using the C57BL/6J/Min/+ (Min/+) mouse, a model of colonic tumorigenesis, we found that dietary administration of 0.1% carnosol decreased intestinal tumor multiplicity by 46%. Previous studies showed that tumor formation in the Min/+ mouse was associated with alterations in the adherens junctions, including an increased expression of tyrosine-phosphorylated beta-catenin, dissociation of beta-catenin from E-cadherin, and strongly reduced amounts of E-cadherin located at lateral plasma membranes of histologically normal enterocytes. Here, we confirm these findings and show that treatment of Min/+ intestinal tissue with carnosol restored both E-cadherin and beta-catenin to these enterocyte membranes, yielding a phenotype similar to that of the Apc(+/+) wild-type (WT) littermate. Moreover, treatment of WT intestine with the phosphatase inhibitor, pervanadate, removed E-cadherin and beta-catenin from the lateral membranes of enterocytes, mimicking the appearance of the Min/+ tissue. Pretreatment of WT tissue with carnosol inhibited the pervanadate-inducible expression of tyrosine-phosphorylated beta-catenin. Thus, the Apc(Min) allele produces adhesion defects that involve up-regulated expression of tyrosine-phosphorylated proteins, including beta-catenin. Moreover, these data suggest that carnosol prevents Apc-associated intestinal tumorigenesis, potentially via its ability to enhance E-cadherin-mediated adhesion and suppress beta-catenin tyrosine phosphorylation. Topics: Abietanes; Adenoma; Animals; beta Catenin; Cadherins; Cell Adhesion; Cell Membrane; Colonic Neoplasms; Cytoskeletal Proteins; Enterocytes; Female; Intestine, Small; Mice; Mice, Inbred C57BL; Phenanthrenes; Phosphorylation; Rosmarinus; Trans-Activators; Tyrosine; Vanadates | 2005 |