carnosol and Acne-Vulgaris

carnosol has been researched along with Acne-Vulgaris* in 1 studies

Other Studies

1 other study(ies) available for carnosol and Acne-Vulgaris

ArticleYear
Rosmarinus officinalis extract suppresses Propionibacterium acnes-induced inflammatory responses.
    Journal of medicinal food, 2013, Volume: 16, Issue:4

    Propionibacterium acnes is a key pathogen involved in the progression of acne inflammation. The development of a new agent possessing antimicrobial and anti-inflammatory activity against P. acnes is therefore of interest. In this study, we investigated the inhibitory effect of rosemary (Rosmarinus officinalis) extract on P. acnes-induced inflammation in vitro and in vivo. The results showed that ethanolic rosemary extract (ERE) significantly suppressed the secretion and mRNA expression of proinflammatory cytokines, including interleukin (IL)-8, IL-1β, and tumor necrosis factor-α in P. acnes-stimulated monocytic THP-1 cells. In an in vivo mouse model, concomitant intradermal injection of ERE attenuated the P. acnes-induced ear swelling and granulomatous inflammation. Since ERE suppressed the P. acnes-induced nuclear factor kappa-B (NF-κB) activation and mRNA expression of Toll-like receptor (TLR) 2, the suppressive effect of ERE might be due, at least partially, to diminished NF-κB activation and TLR2-mediated signaling pathways. Furthermore, three major constituents of ERE, carnosol, carnosic acid, and rosmarinic acid, exerted different immumodulatory activities in vitro. In brief, rosmarinic acid significantly suppressed IL-8 production, while the other two compounds inhibited IL-1β production. Further study is needed to explore the role of bioactive compounds of rosemary in mitigation of P. acnes-induced inflammation.

    Topics: Abietanes; Acne Vulgaris; Animals; Anti-Inflammatory Agents; Cinnamates; Cytokines; Depsides; Humans; Inflammation; Inflammation Mediators; Male; Mice; Mice, Inbred ICR; Phytotherapy; Plant Extracts; Propionibacterium acnes; RNA, Messenger; Rosmarinic Acid; Rosmarinus; Signal Transduction

2013