cardiovascular-agents and Endotoxemia

cardiovascular-agents has been researched along with Endotoxemia* in 6 studies

Other Studies

6 other study(ies) available for cardiovascular-agents and Endotoxemia

ArticleYear
The effect of endotoxin on the controllability of cardiac rhythm in rats.
    Physiological measurement, 2014, Volume: 35, Issue:3

    Decreased heart rate variability (HRV) has both diagnostic and prognostic value in patients with sepsis. However, it is not known whether reduced HRV in sepsis reflects an altered input from the autonomic nervous system or a remodeling of the cardiac pacemaker cells by inflammatory mediators. The present study aimed to investigate the effect of endotoxin on the heart rate dynamics of a denervated isolated heart in rats. Saline or endotoxin was injected into rats and their hearts were isolated and perfused. Atrial electrical activity was recorded and memory length in the time-series was assessed using inverse statistical analysis. Memory was defined as a statistical feature that lasts for a period of time and distinguishes the time-series from a random process. Endotoxaemic hearts exhibited a prolonged memory compared to the controls with respect to observing rare events. This indicates that a sudden decelerating event could potentially affect the cardiac rhythm of an endotoxaemic heart for a longer time than the controls. The prolongation of memory is indirectly linked to a reduced controllability in a complex system; therefore our data may provide evidence for a reduced controllability in cardiac rhythm following endotoxaemia.

    Topics: Analysis of Variance; Animals; Cardiovascular Agents; Endotoxemia; Endotoxins; Entropy; Heart; Heart Rate; Linear Models; Male; Nonlinear Dynamics; Probability; Rats; Rats, Sprague-Dawley; Time Factors

2014
Infusion of Escherichia coli lipopolysaccharide toxin in rats produces an early and severe impairment of baroreflex function in absence of blood pressure changes.
    Shock (Augusta, Ga.), 2013, Volume: 39, Issue:2

    The assessment of baroreflex function since the first appearance of endotoxemia is important because the arterial baroreflex should exert a protective role during sepsis. Nevertheless, contrasting results were previously reported. This could be due to the hemodynamic instability characterizing this condition that may per se interfere with reflex cardiovascular adjustments. The aim of our study was therefore to study the baroreflex function (a) since the very beginning of infusion of Escherichia coli lipopolysaccharide (LPS) toxin and (b) in absence of the unloading effect produced by a decrease in blood pressure. Lipopolysaccharide was infused in 10 rats for 20 min at the infusion rate of 0.05 mg · kg · min. Blood pressure was continuously measured before, during, and after infusion, and the baroreflex function was evaluated analyzing spontaneous fluctuations of systolic blood pressure and pulse interval by the sequence and transfer-function techniques. Plasma concentrations of inflammatory (interleukin 6, tumor necrosis factor α) and anti-inflammatory (interleukin 10) cytokines were measured in other eight rats, similarly instrumented, four of which receiving the same LPS infusion. We found that blood pressure levels did not change with the infusion of LPS, whereas inflammatory cytokines increased significantly. The baroreflex sensitivity was significantly reduced 10 min after the beginning of LPS infusion, reached values about half those at baseline within 15 min after the start of infusion, and remained significantly low after the end of infusion. In conclusion, we documented that septic shock inducing LPS infusion is responsible for a very rapid impairment of the baroreflex function, independent from the level of blood pressure.

    Topics: Administration, Intravenous; Animals; Baroreflex; Blood Pressure; Cardiovascular Agents; Cytokines; Endotoxemia; Escherichia coli; Hypotension; Lipopolysaccharides; Rats; Rats, Sprague-Dawley

2013
Influence of fructose-1,6-diphosphate on endotoxin-induced lung injuries in sheep.
    The Journal of surgical research, 2007, Volume: 138, Issue:1

    Fructose-1,6-diphosphate (FDP) is reported to have a salutary effect in endotoxin shock and sepsis. This investigation describes the effect of FDP on pulmonary and systemic hemodynamics, lung lymph protein clearance, and leukocyte count in sheep infused with Escherichia coli endotoxin.. Anesthetized sheep (n = 18), some of which underwent thoracotomy to cannulate lymphatic nodes, were used in this study. After stabilization, all sheep received E. coli endotoxin, 5 microg/kg i.v. infusion over 30 min. Concomitant with the endotoxin infusion, half of the animals were randomly selected to receive an i.v. bolus of FDP (10%), 50 mg/kg, followed by a continuous infusion of 5 mg.kg(-1).min(-1) for 4 h; the rest were treated in the same manner with glucose (10%) in 0.9% NaCl.. Pulmonary artery pressure (PAP) and resistance in the glucose group increased from 20.8 +/- 1.6 to 36.7 +/- 3.2 mmHg (P < 0.007) and from 531 +/- 114 to 1137 +/- 80 dyn.s(-1).cm(-5), respectively (P < 0.005). Despite an increase during endotoxin infusion, these parameters in the FDP group returned to control values. There were no differences in left ventricular pressures, cardiac output, heart rate, and arterial oxygen tension between the groups. In the glucose group, lymph protein clearance was higher (P < 0.01) and blood leukocyte count was lower (P < 0.02). The wet/dry lung weight ratio (g/g) for the glucose group was 5.57 +/- 0.04 and for the FDP-treated group 4.76 +/- 0.06 (P < 0.0005).. FDP treatment attenuated significantly the characteristic pulmonary hypertension, lung lymph protein clearance, and pulmonary vascular leakage seen in sheep infused with endotoxin.

    Topics: Animals; Cardiovascular Agents; Endotoxemia; Endotoxins; Extravascular Lung Water; Fructosediphosphates; Hypertension, Pulmonary; Leukocyte Count; Lymph; Pulmonary Wedge Pressure; Respiratory Distress Syndrome; Sheep; Vascular Resistance

2007
A cardiovascular drug rescues mice from lethal sepsis by selectively attenuating a late-acting proinflammatory mediator, high mobility group box 1.
    Journal of immunology (Baltimore, Md. : 1950), 2007, Mar-15, Volume: 178, Issue:6

    The pathogenesis of sepsis is mediated in part by bacterial endotoxin, which stimulates macrophages/monocytes to sequentially release early (e.g., TNF, IL-1, and IFN-gamma) and late (e.g., high mobility group box 1 (HMGB1) protein) proinflammatory cytokines. The recent discovery of HMGB1 as a late mediator of lethal sepsis has prompted investigation for development of new experimental therapeutics. We found that many steroidal drugs (such as dexamethasone and cortisone) and nonsteroidal anti-inflammatory drugs (such as aspirin, ibuprofen, and indomethacin) failed to influence endotoxin-induced HMGB1 release even at superpharmacological concentrations (up to 10-25 microM). However, several steroid-like pigments (tanshinone I, tanshinone IIA, and cryptotanshinone) of a popular Chinese herb, Danshen (Salvia miltiorrhiza), dose dependently attenuated endotoxin-induced HMGB1 release in macrophage/monocyte cultures. A water-soluble tanshinone IIA sodium sulfonate derivative (TSNIIA-SS), which has been widely used as a Chinese medicine for patients with cardiovascular disorders, selectively abrogated endotoxin-induced HMGB1 cytoplasmic translocation and release in a glucocorticoid receptor-independent manner. Administration of TSNIIA-SS significantly protected mice against lethal endotoxemia and rescued mice from lethal sepsis even when the first dose was given 24 h after the onset of sepsis. The therapeutic effects were partly attributable to attenuation of systemic accumulation of HMGB1 (but not TNF and NO) and improvement of cardiovascular physiologic parameters (e.g., decrease in total peripheral vascular resistance and increase in cardiac stroke volume) in septic animals. Taken together, these data re-enforce the pathogenic role of HMGB1 in lethal sepsis, and support a therapeutic potential for TSNIIA-SS in the treatment of human sepsis.

    Topics: Animals; Cardiovascular Agents; Cardiovascular Diseases; Cytokines; Dose-Response Relationship, Drug; Drugs, Chinese Herbal; Endotoxemia; High Mobility Group Proteins; HMGB1 Protein; Humans; Male; Mice; Mice, Inbred BALB C; Phenanthrenes; Protein Transport; Rats; Rats, Sprague-Dawley; Repressor Proteins; Stroke Volume; Vascular Resistance

2007
Cardiac effects of endothelin receptor antagonism in endotoxemic pigs.
    American journal of physiology. Heart and circulatory physiology, 2007, Volume: 293, Issue:2

    Myocardial depression in sepsis is frequently encountered clinically and contributes to morbidity and mortality. Increased plasma levels of endothelin-1 (ET-1) have been described in septic shock, and previous reports have shown beneficial effects on cardiovascular performance and survival in septic models using ET receptor antagonists. The aim of the current study was to investigate specific cardiac effects of ET receptor antagonism in endotoxicosis. Sixteen domestic pigs were anesthetized and subjected to endotoxin for 5 h. Eight of these pigs were given tezosentan (dual ET receptor antagonist) after 3 h. Cardiac effects were evaluated using the left ventricular (LV) pressure-volume relationship. Endotoxin was not associated with any effects on parameters of LV contractile function [end-systolic elastance (Ees), preload recruitable stroke work (PRSW), power(max)/end-diastolic volume (PWR(max)/EDV) and dP/dt(max)/end-diastolic volume (dP/dt(max)/EDV)] but with impairments in isovolumic relaxation (time constant for pressure decay, tau) and mechanical efficiency. Tezosentan administration decreased Ees, PWR(max)/EDV, and dP/dt(max)/EDV, while improving tau and LV stiffness. Thus, dual ET receptor antagonism was associated with a decline in contractile function but, in contrast, improved diastolic function. Positive hemodynamic effects from ET receptor antagonism in acute endotoxemia may be due to changes in cardiac load and enhanced diastolic function rather than improved contractile function.

    Topics: Animals; Blood Pressure; Cardiovascular Agents; Coronary Circulation; Disease Models, Animal; Endothelin A Receptor Antagonists; Endothelin B Receptor Antagonists; Endothelin-1; Endotoxemia; Endotoxins; Female; Heart Rate; Myocardial Contraction; Oxygen Consumption; Pyridines; Receptor, Endothelin A; Receptor, Endothelin B; Sus scrofa; Tetrazoles; Time Factors; Ventricular Function, Left; Ventricular Pressure

2007
Interventions to improve cardiopulmonary hemodynamics during laparoscopy in a porcine sepsis model.
    Journal of the American College of Surgeons, 1999, Volume: 189, Issue:5

    Laparoscopy is increasingly used in severely ill and acutely septic patients. In animals undergoing laparoscopy, the hemodynamic response to sepsis is blunted. Specific interventions to augment the hemodynamic potential may make laparoscopic intervention a safer alternative in septic patients. We compared different interventions to improve hemodynamic performance during exploratory laparoscopy in a porcine endotoxic shock model.. Domestic pigs (n = 12) received intravenous lipopolysaccharide injection and underwent surgical abdominal exploration using either laparoscopy or conventional laparotomy. For comparison, pigs exposed to endotoxin underwent laparoscopy with these interventions: intravenous infusions of prostacyclin (n = 5) or indomethacin (n = 4), intravenous crystalloid resuscitation (n = 5), pulmonary hyperventilation (n = 4), or abdominal insufflation with air (n = 5). Hemodynamic measurements and blood gas analyses were obtained using Swan-Ganz and arterial catheters.. Septic animals treated with prostacyclin undergoing laparoscopy had a higher cardiac index (CI, p < 0.01), stroke volume (SV; p < 0.001) and oxygen delivery (p < 0.05) than the untreated group. Likewise, treatment with indomethacin was associated with a higher CI (p < 0.001), SV (p < 0.005), and oxygen delivery (p < 0.005) compared with the untreated group. These effects may be secondary to a decreased pulmonary vascular resistance, demonstrated in the animals that received either prostacyclin (p < 0.05) or indomethacin (p < 0.05). In addition, animals given aggressive fluid resuscitation had a significantly higher CI (p < 0.05) and SV (p < 0.001) than those with normal fluid resuscitation during laparoscopy. Manipulation of arterial pH by insufflation of the abdomen with air to create the pneumoperitoneum, or by aggressively hyperventilating the animals, did not improve CI.. Adverse effects of laparoscopy on cardiovascular hemodynamics in the septic state may be mediated by increased pulmonary vascular resistance, diminished venous return, or both. Specific interventions to reverse these variables may ameliorate hemodynamic changes seen.

    Topics: Analysis of Variance; Animals; Antihypertensive Agents; Cardiovascular Agents; Disease Models, Animal; Endotoxemia; Epoprostenol; Escherichia coli; Fluid Therapy; Hemodynamics; Hydrogen-Ion Concentration; Indomethacin; Laparoscopy; Pneumoperitoneum, Artificial; Polysaccharides, Bacterial; Shock, Septic; Swine

1999