cardamonin has been researched along with Colorectal-Neoplasms* in 3 studies
3 other study(ies) available for cardamonin and Colorectal-Neoplasms
Article | Year |
---|---|
Cardamonin Attenuates Experimental Colitis and Associated Colorectal Cancer.
Cardamonin is a naturally occurring chalcone, majorly from the Zingiberaceae family, which includes a wide range of spices from India. Herein, we investigated the anti-inflammatory property of cardamonin using different in vitro and in vivo systems. In RAW 264.7 cells, treatment with cardamonin showed a reduced nitrous oxide production without affecting the cell viability and decreased the expression of iNOS, TNF-α, and IL-6, and inhibited NF-kB signaling which emphasizes the role of cardamonin as an anti-inflammatory molecule. In a mouse model of dextran sodium sulfate (DSS)-induced colitis, cardamonin treatment protected the mice from colitis. Subsequently, we evaluated the therapeutic potential of this chalcone in a colitis-associated colon cancer model. We performed microRNA profiling in the different groups and observed that cardamonin modulates miRNA expression, thereby inhibiting tumor formation. Together, our findings indicate that cardamonin has the potential to be considered for future therapy against colorectal cancer. Topics: Animals; Anti-Inflammatory Agents; Azoxymethane; Cell Proliferation; Cell Survival; Chalcones; Colitis; Colorectal Neoplasms; Dextran Sulfate; Disease Models, Animal; Gene Expression Regulation, Neoplastic; HCT116 Cells; Humans; Mice; MicroRNAs; Nitrous Oxide; RAW 264.7 Cells; Sequence Analysis, RNA; Signal Transduction; THP-1 Cells | 2021 |
Cardamonin inhibits colonic neoplasia through modulation of MicroRNA expression.
Colorectal cancer is currently the third leading cause of cancer related deaths. There is considerable interest in using dietary intervention strategies to prevent chronic diseases including cancer. Cardamonin is a spice derived nutraceutical and herein, for the first time we evaluated the therapeutic benefits of cardamonin in Azoxymethane (AOM) induced mouse model of colorectal cancer. Mice were divided into 4 groups of which three groups were given six weekly injections of AOM. One group served as untreated control and remaining groups were treated with either vehicle or Cardamonin starting from the same day or 16 weeks after the first AOM injection. Cardamonin treatment inhibited the tumor incidence, tumor multiplicity, Ki-67 and β-catenin positive cells. The activation of NF-kB signaling was also abrogated after cardamonin treatment. To elucidate the mechanism of action a global microRNA profiling of colon samples was performed. Computational analysis revealed that there is a differential expression of miRNAs between these groups. Subsequently, we extend our findings to human colorectal cancer and found that cardamonin inhibited the growth, induces cell cycle arrest and apoptosis in human colorectal cancer cell lines. Taken together, our study provides a better understanding of chemopreventive potential of cardamonin in colorectal cancer. Topics: Active Transport, Cell Nucleus; Animals; Antineoplastic Agents; Apoptosis; bcl-2-Associated X Protein; Cell Line, Tumor; Cell Nucleus; Cell Proliferation; Chalcones; Colorectal Neoplasms; Humans; MAP Kinase Signaling System; Matrix Metalloproteinases; Mice; Mice, Inbred C57BL; MicroRNAs; Oxidation-Reduction; Reactive Oxygen Species; Transcription Factor RelA; Transcriptome | 2017 |
Cardamonin induces autophagy and an antiproliferative effect through JNK activation in human colorectal carcinoma HCT116 cells.
Cardamonin (2',4'-dihydroxy-6'-methoxychalcone) is derived from Alpinia katsumadai Hayata (Zingiberaceae), a plant that has been used in Traditional Chinese Medicine for thousands of years. Several anticancer agents have been reported to induce autophagy, which either protects cells or further sensitizes cells to drug treatment. However, the possible autophagic and antiproliferative effects of cardamonin on the human colorectal carcinoma HCT116 cell line are unclear. In the present study, experiments were conducted to determine the effects of cardamonin on cell proliferation, cell cycle distribution, and stimulation of autophagy in cultures of the HCT116 cell line. The results showed that cardamonin inhibited cell proliferation, induced G2/M phase cell cycle arrest, and enhanced autophagy in HCT116 cells. We found evidence that cardamonin-induced autophagic and antiproliferative effects are regulated by the tumor protein p53. We also found that the enhanced activation of c-Jun N-terminal kinase (JNK) by cardamonin was partially regulated by p53 and was critical for cardamonin-induced autophagic and antiproliferative effects in HCT116 cells. These findings suggest that cardamonin or other anticancer agents that increase p53/JNK-dependent stimulation of autophagy could be used to effectively treat patients with colorectal carcinoma. Topics: Antineoplastic Agents; Apoptosis; Cell Proliferation; Chalcones; Colorectal Neoplasms; G2 Phase Cell Cycle Checkpoints; HCT116 Cells; Humans; M Phase Cell Cycle Checkpoints; Mitogen-Activated Protein Kinase 8; RNA Interference; RNA, Small Interfering; Tumor Suppressor Protein p53 | 2015 |