cardamonin and Breast-Neoplasms

cardamonin has been researched along with Breast-Neoplasms* in 3 studies

Reviews

1 review(s) available for cardamonin and Breast-Neoplasms

ArticleYear
Anti-Angiogenic Effects of Phytochemicals on miRNA Regulating Breast Cancer Progression.
    Biomolecules, 2020, 01-27, Volume: 10, Issue:2

    Several phytochemicals have been identified for their role in modifying miRNA regulating tumor progression. miRNAs modulate the expression of several oncogenes and tumor suppressor genes including the genes that regulate tumor angiogenesis. Hypoxia inducible factor-1 alpha (HIF-1α) signaling is a central axis that activates oncogenic signaling and acts as a metabolic switch in endothelial cell (EC) driven tumor angiogenesis. Tumor angiogenesis driven by metabolic reprogramming of EC is crucial for tumor progression and metastasis in many different cancers, including breast cancers, and has been linked to aberrant miRNA expression profiles. In the current article, we identify different miRNAs that regulate tumor angiogenesis in the context of oncogenic signaling and metabolic reprogramming in ECs and review how selected phytochemicals could modulate miRNA levels to induce an anti-angiogenic action in breast cancer. Studies involving genistein, epigallocatechin gallate (EGCG) and resveratrol demonstrate the regulation of miRNA-21, miRNA-221/222 and miRNA-27, which are prognostic markers in triple negative breast cancers (TNBCs). Modulating the metabolic pathway is a novel strategy for controlling tumor angiogenesis and tumor growth. Cardamonin, curcumin and resveratrol exhibit their anti-angiogenic property by targeting the miRNAs that regulate EC metabolism. Here we suggest that using phytochemicals to target miRNAs, which in turn suppresses tumor angiogenesis, should have the potential to inhibit tumor growth, progression, invasion and metastasis and may be developed into an effective therapeutic strategy for the treatment of many different cancers where tumor angiogenesis plays a significant role in tumor growth and progression.

    Topics: Angiogenesis Inhibitors; Antineoplastic Agents, Phytogenic; Breast Neoplasms; Chalcones; Curcumin; Disease Progression; Endothelial Cells; Female; Humans; Hypoxia-Inducible Factor 1, alpha Subunit; MicroRNAs; Neoplasm Invasiveness; Neoplasm Metastasis; Neovascularization, Pathologic; Oxygen; Phytochemicals; Phytotherapy; Prognosis; Reactive Oxygen Species; Resveratrol; Signal Transduction

2020

Other Studies

2 other study(ies) available for cardamonin and Breast-Neoplasms

ArticleYear
Cardamonin reduces chemotherapy-enriched breast cancer stem-like cells in vitro and in vivo.
    Oncotarget, 2016, Jan-05, Volume: 7, Issue:1

    The failure of cytotoxic chemotherapy in breast cancers has been closely associated with the presence of drug resistant cancer stem cells (CSCs). Thus, screening for small molecules that selectively inhibit growth of CSCs may offer great promise for cancer control, particularly in combination with chemotherapy. In this report, we provide the first demonstration that cardamonin, a small molecule, selectively inhibits breast CSCs that have been enriched by chemotherapeutic drugs. In addition, cardamonin also sufficiently prevents the enrichment of CSCs when simultaneously used with chemotherapeutic drugs. Specifically, cardamonin effectively abolishes chemotherapeutic drug-induced up-regulation of IL-6, IL-8 and MCP-1 and activation of NF-κB/IKBα and Stat3. Furthermore, in a xenograft mouse model, co-administration of cardamonin and the chemotherapeutic drug doxorubicin significantly retards tumor growth and simultaneously decreases CSC pools in vivo. Since cardamonin has been found in some herbs, this work suggests a potential new approach for the effective treatment of breast CSCs by administration of cardamonin either concurrent with or after chemotherapeutic drugs.

    Topics: Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Blotting, Western; Breast Neoplasms; Cell Line, Tumor; Chalcones; Cytokines; Doxorubicin; Homeodomain Proteins; Humans; MCF-7 Cells; Nanog Homeobox Protein; Neoplastic Stem Cells; NF-kappa B; Octamer Transcription Factor-3; Reverse Transcriptase Polymerase Chain Reaction; SOXB1 Transcription Factors; STAT3 Transcription Factor; Up-Regulation; Xenograft Model Antitumor Assays; Zingiberaceae

2016
β-Catenin and NF-κB co-activation triggered by TLR3 stimulation facilitates stem cell-like phenotypes in breast cancer.
    Cell death and differentiation, 2015, Volume: 22, Issue:2

    Cancer stem cells (CSCs) are responsible for tumor initiation and progression. Toll-like receptors (TLRs) are highly expressed in cancer cells and associated with poor prognosis. However, a linkage between CSCs and TLRs is unclear, and potential intervention strategies to prevent TLR stimulation-induced CSC formation and underlying mechanisms are lacking. Here, we demonstrate that stimulation of toll-like receptor 3 (TLR3) promotes breast cancer cells toward a CSC phenotype in vitro and in vivo. Importantly, conventional NF-κB signaling pathway is not exclusively responsible for TLR3 activation-enriched CSCs. Intriguingly, simultaneous activation of both β-catenin and NF-κB signaling pathways, but neither alone, is required for the enhanced CSC phenotypes. We have further identified a small molecule cardamonin that can concurrently inhibit β-catenin and NF-κB signals. Cardamonin is capable of effectively abolishing TLR3 activation-enhanced CSC phenotypes in vitro and successfully controlling TLR3 stimulation-induced tumor growth in human breast cancer xenografts. These findings may provide a foundation for developing new strategies to prevent the induction of CSCs during cancer therapies.

    Topics: Animals; beta Catenin; Breast Neoplasms; Cell Line, Tumor; Chalcones; Disease Models, Animal; Female; Humans; Mice, Nude; Neoplasm Transplantation; Neoplastic Stem Cells; NF-kappa B; Phenotype; Signal Transduction; Toll-Like Receptor 3

2015