carboxypeptidase-b has been researched along with Malaria* in 4 studies
4 other study(ies) available for carboxypeptidase-b and Malaria
Article | Year |
---|---|
Malaria Box Compounds against Anopheles gambiae (Diptera: Culicidae) Carboxypeptidase B Activity to Block Malaria Transmission.
Carboxypeptidase B (CPB) plays an important role in blood digestion in mosquitos, aiding the release of free amino acids. Anopheles CPB is a target to block malaria transmission because it facilitates Plasmodium invasion of the mosquito midgut. Our study aimed to discover inhibitors of Anopheles CPB to prevent Plasmodium development in the mosquito. The Anopheles gambiae cpb (Agcpb) gene without a signal sequence was cloned into the pET28b expression vector. The recombinant AgCPB protein was expressed in E. coli BL21(DE3) within inclusion bodies after induction with 0.5 mM isopropyl β-D-1-thiogalactopyranoside at 37°C for 4 h. The protein pellet was dissolved in 6 M urea, purified by affinity chromatography, and dialyzed in reaction buffer. The refolded recombinant AgCPB could digest the hippuryl-arginine substrate similarly to that of the commercial porcine pancreas CPB. The 20 top-scoring malaria box compounds from the virtual-screening results were then chosen for an in vitro inhibition assay against AgCPB. Four of the 20 malaria box compounds could inhibit AgCPB activity. The compound MMV007591 was the most potent inhibitor with an IC50 at 0.066 µM. The results indicate that these candidate compounds may be utilized in drug development against mosquito CPB activity to curb malaria transmission. Topics: Animals; Anopheles; Carboxypeptidase B; Escherichia coli; Malaria; Mosquito Vectors; Plasmodium; Swine | 2022 |
Active Compounds Against Anopheles minimus Carboxypeptidase B for Malaria Transmission-Blocking Strategy.
Malaria transmission-blocking compounds have been studied to block the transmission of malaria parasites, especially the drug-resistant Plasmodium. Carboxypeptidase B (CPB) in the midgut of Anopheline mosquitoes has been demonstrated to be essential for the sexual development of Plasmodium in the mosquito. Thus, the CPB is a potential target for blocking compounds. The aim of this research was to screen compounds from the National Cancer Institute (NCI) diversity dataset and U.S. Food and Drug Administration (FDA)-approved drugs that could reduce the Anopheles CPB activity. The cDNA fragment of cpb gene from An. minimus (cpbAmi) was amplified and sequenced. The three-dimensional structure of CPB was predicted from the deduced amino acid sequence. The virtual screening of the compounds from NCI diversity set IV and FDA-approved drugs was performed against CPBAmi. The inhibition activity against CPBAmi of the top-scoring molecules was characterized in vitro. Three compounds-NSC-1014, NSC-332670, and aminopterin with IC50 at 0.99 mM, 1.55 mM, and 0.062 mM, respectively-were found to significantly reduce the CPBAmi activity. Topics: Amino Acid Sequence; Animals; Anopheles; Carboxypeptidase B; Cloning, Molecular; Malaria; Molecular Docking Simulation; Molecular Sequence Data; Sequence Homology, Amino Acid | 2015 |
Molecular characterization of the carboxypeptidase B1 of Anopheles stephensi and its evaluation as a target for transmission-blocking vaccines.
Malaria is one of the most important infectious diseases in the world, and it has many economic and social impacts on populations, especially in poor countries. Transmission-blocking vaccines (TBVs) are valuable tools for malaria eradication. A study on Anopheles gambiae revealed that polyclonal antibodies to carboxypeptidase B1 of A. gambiae can block sexual parasite development in the mosquito midgut. Hence, it was introduced as a TBV target in regions where A. gambiae is the main malaria vector. However, in Iran and neighboring countries as far as China, the main malaria vector is Anopheles stephensi. Also, the genome of this organism has not been sequenced yet. Therefore, in this study, carboxypeptidase B1 of A. stephensi was characterized by genomic and proteomic approaches. Furthermore, its expression pattern after ingestion of Plasmodium falciparum gametocytes and the effect of anti-CPBAs1 antibodies on sexual parasite development were evaluated. Our results revealed that the cpbAs1 expression level was increased after ingestion of the mature gametocytes of P. falciparum and that anti-CPBAs1 directed antibodies could significantly reduce the mosquito infection rate in the test group compared with the control group. Therefore, according to our findings and with respect to the high similarity of carboxypeptidase enzymes between the two main malaria vectors in Africa (A. gambiae) and Asia (A. stephensi) and the presence of other sympatric vectors, CPBAs1 could be introduced as a TBV candidate in regions where A. stephensi is the main malaria vector, and this will broaden the scope for the potential wider application of CPBAs1 antigen homologs/orthologs. Topics: Amino Acid Sequence; Animals; Anopheles; Base Sequence; Carboxypeptidase B; Female; Gastrointestinal Tract; Gene Expression Regulation, Enzymologic; Insect Proteins; Insect Vectors; Malaria; Malaria Vaccines; Models, Molecular; Molecular Sequence Data; Plasmodium falciparum; Protein Conformation | 2013 |
Carboxypeptidases B of Anopheles gambiae as targets for a Plasmodium falciparum transmission-blocking vaccine.
Anopheles gambiae is the major African vector of Plasmodium falciparum, the most deadly species of human malaria parasite and the most prevalent in Africa. Several strategies are being developed to limit the global impact of malaria via reducing transmission rates, among which are transmission-blocking vaccines (TBVs), which induce in the vertebrate host the production of antibodies that inhibit parasite development in the mosquito midgut. So far, the most promising components of a TBV are parasite-derived antigens, although targeting critical mosquito components might also successfully block development of the parasite in its vector. We previously identified A. gambiae genes whose expression was modified in P. falciparum-infected mosquitoes, including one midgut carboxypeptidase gene, cpbAg1. Here we show that P. falciparum up-regulates the expression of cpbAg1 and of a second midgut carboxypeptidase gene, cpbAg2, and that this up-regulation correlates with an increased carboxypeptidase B (CPB) activity at a time when parasites establish infection in the mosquito midgut. The addition of antibodies directed against CPBAg1 to a P. falciparum-containing blood meal inhibited CPB activity and blocked parasite development in the mosquito midgut. Furthermore, the development of the rodent parasite Plasmodium berghei was significantly reduced in mosquitoes fed on infected mice that had been immunized with recombinant CPBAg1. Lastly, mosquitoes fed on anti-CPBAg1 antibodies exhibited reduced reproductive capacity, a secondary effect of a CPB-based TBV that could likely contribute to reducing Plasmodium transmission. These results indicate that A. gambiae CPBs could constitute targets for a TBV that is based upon mosquito molecules. Topics: Animals; Anopheles; Antibodies; Carboxypeptidase B; Disease Models, Animal; Female; Gastrointestinal Tract; Humans; Malaria; Malaria Vaccines; Malaria, Falciparum; Mice; Plasmodium berghei; Plasmodium falciparum; Reproduction; Up-Regulation | 2007 |