carboxycinnamic-acid-bishydroxamide has been researched along with Cardiomegaly* in 2 studies
2 other study(ies) available for carboxycinnamic-acid-bishydroxamide and Cardiomegaly
Article | Year |
---|---|
Pan-histone deacetylase inhibitors regulate signaling pathways involved in proliferative and pro-inflammatory mechanisms in H9c2 cells.
We have shown previously that pan-HDAC inhibitors (HDACIs) m-carboxycinnamic acid bis-hydroxamide (CBHA) and trichostatin A (TSA) attenuated cardiac hypertrophy in BALB/c mice by inducing hyper-acetylation of cardiac chromatin that was accompanied by suppression of pro-inflammatory gene networks. However, it was not feasible to determine the precise contribution of the myocytes- and non-myocytes to HDACI-induced gene expression in the intact heart. Therefore, the current study was undertaken with a primary goal of elucidating temporal changes in the transcriptomes of cardiac myocytes exposed to CBHA and TSA.. We incubated H9c2 cardiac myocytes in growth medium containing either of the two HDACIs for 6h and 24h and analyzed changes in gene expression using Illumina microarrays. H9c2 cells exposed to TSA for 6h and 24h led to differential expression of 468 and 231 genes, respectively. In contrast, cardiac myocytes incubated with CBHA for 6h and 24h elicited differential expression of 768 and 999 genes, respectively. We analyzed CBHA- and TSA-induced differentially expressed genes by Ingenuity Pathway (IPA), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Core_TF programs and discovered that CBHA and TSA impinged on several common gene networks. Thus, both HDACIs induced a repertoire of signaling kinases (PTEN-PI3K-AKT and MAPK) and transcription factors (Myc, p53, NFkB and HNF4A) representing canonical TGFβ, TNF-α, IFNγ and IL-6 specific networks. An overrepresentation of E2F, AP2, EGR1 and SP1 specific motifs was also found in the promoters of the differentially expressed genes. Apparently, TSA elicited predominantly TGFβ- and TNF-α-intensive gene networks regardless of the duration of treatment. In contrast, CBHA elicited TNF-α and IFNγ specific networks at 6 h, followed by elicitation of IL-6 and IFNγ-centered gene networks at 24h.. Our data show that both CBHA and TSA induced similar, but not identical, time-dependent, gene networks in H9c2 cardiac myocytes. Initially, both HDACIs impinged on numerous genes associated with adipokine signaling, intracellular metabolism and energetics, and cell cycle. A continued exposure to either CBHA or TSA led to the emergence of a number of apoptosis- and inflammation-specific gene networks that were apparently suppressed by both HDACIs. Based on these data we posit that the anti-inflammatory and anti-proliferative actions of HDACIs are myocyte-intrinsic. These findings advance our understanding of the mechanisms of actions of HDACIs on cardiac myocytes and reveal potential signaling pathways that may be targeted therapeutically. Topics: Animals; Binding Sites; Cardiomegaly; Cell Line; Cell Proliferation; Cinnamates; Gene Regulatory Networks; Genomics; Histone Deacetylase Inhibitors; Histone Deacetylases; Hydroxamic Acids; Inflammation; Myocytes, Cardiac; Rats; Signal Transduction; Sirtuins; Software; Time Factors; Transcription Factors; Transcriptome | 2012 |
Panhistone deacetylase inhibitors inhibit proinflammatory signaling pathways to ameliorate interleukin-18-induced cardiac hypertrophy.
We investigated the genome-wide consequences of pan-histone deacetylase inhibitors (HDACIs) trichostatin A (TSA) and m-carboxycinnamic acid bis-hydroxamide (CBHA) in the hearts of BALB/c mice eliciting hypertrophy in response to interleukin-18 (IL-18). Both TSA and CBHA profoundly altered cardiac chromatin structure that occurred concomitantly with normalization of IL-18-induced gene expression and amelioration of cardiac hypertrophy. The hearts of mice exposed to IL-18+/-TSA or CBHA elicited distinct gene expression profiles. Of 184 genes that were differentially regulated by IL-18 and TSA, 33 were regulated in an opposite manner. The hearts of mice treated with IL-18 and/or CBHA elicited 147 differentially expressed genes (DEGs), a third of which were oppositely regulated by IL-18 and CBHA. Ingenuity Pathways and Kyoto Encyclopedia of Genes and Genomes analyses of DEGs showed that IL-18 impinged on TNF-α- and IFNγ-specific gene networks relegated to controlling immunity and inflammation, cardiac metabolism and energetics, and cell proliferation and apoptosis. These TNF-α- and IFNγ-specific gene networks, extensively connected with PI3K, MAPK, and NF-κB signaling pathways, were oppositely regulated by IL-18 and pan-HDACIs. Evidently, both TSA and CBHA caused a two- to fourfold induction of phosphatase and tensin homolog expression to counteract IL-18-induced proinflammatory signaling and cardiac hypertrophy. Topics: Animals; Cardiomegaly; Chromatin Assembly and Disassembly; Cinnamates; Cluster Analysis; Gene Expression Profiling; Gene Expression Regulation; Gene Regulatory Networks; Histone Deacetylase Inhibitors; Histones; Hydroxamic Acids; Inflammation; Interleukin-18; Intracellular Space; Male; Mice; Mice, Inbred BALB C; Myocardium; Oligonucleotide Array Sequence Analysis; Protein Processing, Post-Translational; Reproducibility of Results; Signal Transduction | 2011 |