carbocyanines has been researched along with Retinal-Degeneration* in 3 studies
3 other study(ies) available for carbocyanines and Retinal-Degeneration
Article | Year |
---|---|
Neurotrophic rationale in glaucoma: a TrkA agonist, but not NGF or a p75 antagonist, protects retinal ganglion cells in vivo.
Glaucoma is a major cause of vision impairment, which arises from the sustained and progressive apoptosis of retinal ganglion cells (RGC), with ocular hypertension being a major risk or co-morbidity factor. Because RGC death often continues after normalization of ocular hypertension, growth factor-mediated protection of compromised neurons may be useful. However, the therapeutic use of nerve growth factor (NGF) has not proven effective at delaying RGC death in glaucoma. We postulated that one cause for the failure of NGF may be related to its binding to two receptors, TrkA and p75. These receptors have distinct cellular distribution in the retina and in neurons they induce complex and sometimes opposing activities. Here, we show in an in vivo therapeutic model of glaucoma that a selective agonist of the pro-survival TrkA receptor was effective at preventing RGC death. RGC loss was fully prevented by combining the selective agonist of TrkA with intraocular pressure-lowering drugs. In contrast, neither NGF nor an antagonist of the pro-apoptotic p75 receptor protected RGCs. These results further a neurotrophic rationale for glaucoma. Topics: Animals; Carbocyanines; Cell Death; Cell Survival; Female; Glaucoma; Intraocular Pressure; Nerve Degeneration; Nerve Growth Factor; Neuroprotective Agents; Peptides; Rats; Rats, Wistar; Receptor, Nerve Growth Factor; Receptor, trkA; Retinal Degeneration; Retinal Ganglion Cells; Stilbamidines | 2007 |
Progressive ganglion cell loss and optic nerve degeneration in DBA/2J mice is variable and asymmetric.
Glaucoma is a chronic neurodegenerative disease of the retina, characterized by the degeneration of axons in the optic nerve and retinal ganglion cell apoptosis. DBA/2J inbred mice develop chronic hereditary glaucoma and are an important model system to study the molecular mechanisms underlying this disease and novel therapeutic interventions designed to attenuate the loss of retinal ganglion cells. Although the genetics of this disease in these mice are well characterized, the etiology of its progression, particularly with respect to retinal degeneration, is not. We have used two separate labeling techniques, post-mortem DiI labeling of axons and ganglion cell-specific expression of the betaGeo reporter gene, to evaluate the time course of optic nerve degeneration and ganglion cell loss, respectively, in aging mice.. Optic nerve degeneration, characterized by axon loss and gliosis is first apparent in mice between 8 and 9 months of age. Degeneration appears to follow a retrograde course with axons dying from their proximal ends toward the globe. Although nerve damage is typically bilateral, the progression of disease is asymmetric between the eyes of individual mice. Some nerves also exhibit focal preservation of tracts of axons generally in the nasal peripheral region. Ganglion cell loss, as a function of the loss of betaGeo expression, is evident in some mice between 8 and 10 months of age and is prevalent in the majority of mice older than 10.5 months. Most eyes display a uniform loss of ganglion cells throughout the retina, but many younger mice exhibit focal loss of cells in sectors extending from the optic nerve head to the retinal periphery. Similar to what we observe in the optic nerves, ganglion cell loss is often asymmetric between the eyes of the same animal.. A comparison of the data collected from the two cohorts of mice used for this study suggests that the initial site of damage in this disease is to the axons in the optic nerve, followed by the subsequent death of the ganglion cell soma. Topics: Age Factors; Animals; beta-Glucosidase; Carbocyanines; Cell Count; Chi-Square Distribution; Disease Models, Animal; Disease Progression; DNA-Binding Proteins; Glaucoma; Mice; Mice, Inbred DBA; Mice, Transgenic; Optic Nerve Diseases; Retinal Degeneration; Retinal Ganglion Cells; Time Factors; Transcription Factors; Ubiquitin-Protein Ligase Complexes | 2006 |
Evidence for glaucoma-induced horizontal cell alterations in the human retina.
In this study we investigated changes to horizontal cells in human retinae affected by glaucoma. Glaucoma is characterized by raised intraocular pressure and is responsible for retinal ganglion cell and, possibly, photoreceptor degeneration. It was therefore assumed that horizontal cells might also be affected. The carbocyanine dye DiI was placed at discrete points on fixed, whole-mounted retinae obtained from normal and glaucomatous patients. After allowing 6-24 weeks for intramembranous diffusion within the lipid layers of the nerve cells and, therefore, fluorescent labeling, we measured horizontal cell soma and dendritic field sizes. Selected cells were then embedded in Araldite and cut at 4 microns. Horizontal cells in glaucomatous eyes appeared larger and had a granulated outline as compared with cells from normal retinae. Analysis of the mean cell soma size indicated that cells were 26% larger in the glaucomatous retinae and that this increase was significantly different from that seen in normal retinae (P < 0.05). The dendritic field size was unaffected (P > 0.05). As seen in cross section there was a clear loss of photoreceptor outer segments, and shrunken silhouettes of photoreceptor inner segments with pyknotic nuclei were observed. It is proposed that the increase in some size is indicative of horizontal cell responses that are likely to culminate in degeneration as a result of heightened intraocular pressure. In addition, this paper provides further evidence that photoreceptors are affected by advanced glaucoma. Topics: Carbocyanines; Cell Size; Dendrites; Fluorescent Dyes; Glaucoma; Humans; Neurons; Photoreceptor Cells; Retinal Degeneration | 1996 |