carbocyanines has been researched along with Pulmonary-Fibrosis* in 2 studies
2 other study(ies) available for carbocyanines and Pulmonary-Fibrosis
Article | Year |
---|---|
Targeted migration of bone marrow mesenchymal stem cells inhibits silica-induced pulmonary fibrosis in rats.
Silicosis is a common occupational disease, characterized by silicotic nodules and diffuse pulmonary fibrosis. We demonstrated an anti-fibrotic effect of bone marrow mesenchymal stem cells (BMSCs) in silica-induced lung fibrosis. In the present study, we sought to clarify the homing ability of BMSCs and the specific mechanisms for their effects.. The biodistribution of BMSCs was identified by near-infrared fluorescence (NIRF) imaging in vivo and in vitro. The results showed that BMSCs labeled with NIR-DiR dyes targeted silica-injured lung tissue, wherein they reached a peak at 6 h post-injection and declined dramatically by day 3. Based on these findings, a second injection of BMSCs was administered 3 days after the first injection. The injected BMSCs migrated to the injured lungs, but did not undergo transformation into specific lung cell types. Interestingly, the injection of BMSC-conditioned medium (BMSCs-CM) significantly attenuated silica-induced pulmonary fibrosis. The collagen deposition and number of nodules were decreased in lung tissues of BMSCs-CM-treated rats. In parallel with these findings, the mRNA levels of collagen I, collagen III, and fibronectin, and the content of transforming growth factor (TGF)-β1 and hydroxyproline were decreased in the BMSCs-CM-treated group compared with the silica group. In addition, alveolar epithelial markers were upregulated by BMSCs-CM treatment.. BMSCs migrated to injured areas of the lung after silica instillation and attenuated pulmonary fibrosis. The anti-fibrotic effects of BMSCs were mainly exerted in paracrine manner, rather than through their ability to undergo differentiation. Topics: Animals; Bone Marrow Cells; Carbocyanines; Cell Death; Cell Movement; Culture Media, Conditioned; Epithelial Cells; Female; Gene Expression Regulation; Lung; Male; Mesenchymal Stem Cell Transplantation; Mesenchymal Stem Cells; Models, Biological; Phenotype; Pulmonary Fibrosis; Rats, Wistar; Silicon Dioxide | 2018 |
Synthetic liposomes are protective from bleomycin-induced lung toxicity.
Idiopathic pulmonary fibrosis is a devastating disease characterized by a progressive, irreversible, and ultimately lethal form of lung fibrosis. Except for lung transplantation, no effective treatment options currently exist. The bleomycin animal model is one of the best studied models of lung injury and fibrosis. A previous study using mouse tumor models observed that liposome-encapsulated bleomycin exhibited reduced lung toxicity. Therefore, we hypothesized that airway delivery of synthetic phosphatidylcholine-containing liposomes alone would protect mice from bleomycin-induced lung toxicity. C57BL/6 mice were administered uncharged multilamellar liposomes (100 μl) or PBS vehicle on day 0 by airway delivery. Bleomycin (3.33 U/kg) or saline vehicle was then given intratracheally on day 1 followed by four additional separate doses of liposomes on days 4, 8, 12, and 16. Fluorescent images of liposomes labeled with 1,1'-dioctadecyl-3,3,3',3' tetramethylindocarbocyanine perchlorate confirmed effective and widespread delivery of liposomes to the lower respiratory tract as well as uptake primarily by alveolar macrophages and to a lesser extent by type II alveolar epithelial cells. Results at day 22, 3 wk after bleomycin treatment, showed that airway delivery of liposomes before and after intratracheal administration of bleomycin significantly reduced bleomycin-induced lung toxicity as evidenced by less body weight loss, chronic lung inflammation, and fibrosis as well as improved lung compliance compared with controls. These data indicate that airway-delivered synthetic liposomes represent a novel treatment strategy to reduce the lung toxicity associated with bleomycin in a mouse model. Topics: Administration, Inhalation; Animals; Bleomycin; Carbocyanines; Chronic Disease; Female; Fluorescent Dyes; Intubation, Intratracheal; Liposomes; Lung; Mice; Mice, Inbred C57BL; Pneumonia; Pulmonary Fibrosis; Weight Loss | 2011 |