carbocyanines has been researched along with Movement-Disorders* in 2 studies
2 other study(ies) available for carbocyanines and Movement-Disorders
Article | Year |
---|---|
Motor deficits are triggered by reperfusion-reoxygenation injury as diagnosed by MRI and by a mechanism involving oxidants.
The early antecedents of cerebral palsy (CP) are unknown but are suspected to be due to hypoxia-ischemia (H-I). In our rabbit model of CP, the MRI biomarker, apparent diffusion coefficient (ADC) on diffusion-weighted imaging, predicted which fetuses will develop postnatal hypertonia. Surviving H-I fetuses experience reperfusion-reoxygenation but a subpopulation manifested a continued decline of ADC during early reperfusion-reoxygenation, which possibly represented greater brain injury (RepReOx). We hypothesized that oxidative stress in reperfusion-reoxygenation is a critical trigger for postnatal hypertonia. We investigated whether RepReOx predicted postnatal neurobehavior, indicated oxidative stress, and whether targeting antioxidants at RepReOx ameliorated motor deficits, which included testing of a new superoxide dismutase mimic (MnTnHex-2-PyP). Rabbit dams, 79% gestation (E25), were subjected to 40 min uterine ischemia. Fetal brain ADC was followed during H-I, immediate reperfusion-reoxygenation, and 4-72 h after H-I. Endpoints were postnatal neurological outcome at E32, ADC at end of H-I, ADC nadir during H-I and reperfusion-reoxygenation, and area under ADC curve during the first 20 min of reperfusion-reoxygenation. Antioxidants targeting RepReOx were administered before and/or after uterine ischemia. The new MRI-ADC biomarker for RepReOx improved prediction of postnatal hypertonia. Greater superoxide production, mitochondrial injury, and oligodendroglial loss occurred in fetal brains exhibiting RepReOx than in those without. The antioxidants, MnTnHex-2-PyP and Ascorbate and Trolox combination, significantly decreased postnatal motor deficits and extent of RepReOx. The etiological link between early injury and later motor deficits can thus be investigated by MRI, and allows us to distinguish between critical oxidative stress that causes motor deficits and noncritical oxidative stress that does not. Topics: Age Factors; Animals; Animals, Newborn; Antioxidants; Ascorbic Acid; Benzimidazoles; Blood Flow Velocity; Brain; Brain Mapping; Carbocyanines; Chromans; Diffusion Magnetic Resonance Imaging; Disease Models, Animal; Embryo, Mammalian; Female; Flow Cytometry; Hypoxia-Ischemia, Brain; Ionophores; Laser-Doppler Flowmetry; Membrane Potential, Mitochondrial; Metalloporphyrins; Microvessels; Mitochondria; Movement Disorders; Muscle Hypertonia; O Antigens; Pregnancy; Rabbits; Reperfusion Injury; Superoxides; Time Factors; Valinomycin | 2012 |
Recovery of locomotion correlated with axonal regeneration after a complete spinal transection in the eel.
This research has examined the relationship between axonal regeneration and the return of normal movement following complete transection of the spinal cord. We made measurements of tail beat frequency and amplitude of the caudal body wave from video recordings of eels (Anguilla anguilla) swimming in a water tunnel at several speeds. Each eel was then anaesthetised and the spinal cord cut caudal to the anus; in some animals the resulting gap was filled with a rubber block. All animals were kept at 25 degrees C for recovery periods ranging from 7 to 128 days, during which their swimming performance was monitored regularly. Each fish was then re-anaesthetised and perfused with fixative and the regrowing descending axons labelled with 1,1'-diotadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate. For all animals and at all speeds after surgery, tail beat frequency increased, while amplitude decreased. In non-blocked animals, an improvement in performance was first seen from 8 days following transection and thereafter tail beat frequency decreased progressively until it had returned to normal after 35 to 45 days, while amplitude remained below baseline until at least 45 days. In these animals, few axonal growth cones had penetrated the caudal stump by 7 days, but some had extended as much as 3 mm by 15 days. Many had reached as far as 6 mm between 25 and 36 days, while by 128 days they had progressed up to 10.5 mm. Contralateral crossing was never observed. Functional recovery was never witnessed in animals in which the cord had been blocked and these eels swam at all times with elevated tail beat frequency and reduced caudal amplitude. No labelled axons could be traced into the caudal spinal cord at any recovery stage in such animals. We conclude that re-innervation of only 1-2 segments caudal to the injury is necessary for functional recovery, although continued axonal growth may be important for the refinement of some aspects of movement. Topics: Anguilla; Animals; Carbocyanines; Denervation; Disease Models, Animal; Efferent Pathways; Fluorescent Dyes; Growth Cones; Locomotion; Movement Disorders; Nerve Regeneration; Recovery of Function; Spinal Cord; Spinal Cord Injuries; Swimming | 2001 |