carbocyanines has been researched along with Mitochondrial-Diseases* in 6 studies
6 other study(ies) available for carbocyanines and Mitochondrial-Diseases
Article | Year |
---|---|
Melatonin Alleviates Intracerebral Hemorrhage-Induced Secondary Brain Injury in Rats via Suppressing Apoptosis, Inflammation, Oxidative Stress, DNA Damage, and Mitochondria Injury.
Intracerebral hemorrhage (ICH) is a cerebrovascular disease with high mortality and morbidity, and the effective treatment is still lacking. We designed this study to investigate the therapeutic effects and mechanisms of melatonin on the secondary brain injury (SBI) after ICH. An in vivo ICH model was induced via autologous whole blood injection into the right basal ganglia in Sprague-Dawley (SD) rats. Primary rat cortical neurons were treated with oxygen hemoglobin (OxyHb) as an in vitro ICH model. The results of the in vivo study showed that melatonin alleviated severe brain edema and behavior disorders induced by ICH. Indicators of blood-brain barrier (BBB) integrity, DNA damage, inflammation, oxidative stress, apoptosis, and mitochondria damage showed a significant increase after ICH, while melatonin reduced their levels. Meanwhile, melatonin promoted further increasing of expression levels of antioxidant indicators induced by ICH. Microscopically, TUNEL and Nissl staining showed that melatonin reduced the numbers of ICH-induced apoptotic cells. Inflammation and DNA damage indicators exhibited an identical pattern compared to those above. Additionally, the in vitro study demonstrated that melatonin reduced the apoptotic neurons induced by OxyHb and protected the mitochondrial membrane potential. Collectively, our investigation showed that melatonin ameliorated ICH-induced SBI by impacting apoptosis, inflammation, oxidative stress, DNA damage, brain edema, and BBB damage and reducing mitochondrial membrane permeability transition pore opening, and melatonin may be a potential therapeutic agent of ICH. Topics: Animals; Annexin A5; Antioxidants; Apoptosis; Benzimidazoles; Brain Edema; Brain Injuries; Carbocyanines; Cerebral Cortex; Cerebral Hemorrhage; Disease Models, Animal; DNA Damage; In Situ Nick-End Labeling; Inflammation; Male; Melatonin; Mitochondrial Diseases; Neurons; Oxidative Stress; Rats; Rats, Sprague-Dawley; Rhodamines; Time Factors | 2018 |
Single Heterozygous ATP13A2 Mutations Cause Cellular Dysfunction Associated with Parkinson's Disease.
Topics: Adenosine Triphosphate; Benzimidazoles; Carbocyanines; Chlorides; Dose-Response Relationship, Drug; Female; Fibroblasts; Gene Expression Regulation; HSP70 Heat-Shock Proteins; Humans; Male; Membrane Potential, Mitochondrial; Mitochondrial Diseases; Mitochondrial Proteins; Mutation; Parkinson Disease; Proton-Translocating ATPases; Zinc; Zinc Compounds | 2018 |
Utility of array CGH in molecular diagnosis of mitochondrial disorders.
Array comparative genomic hybridization (aCGH) is a powerful clinical diagnostic tool that can be used to evaluate copy number changes in the genome. Targeted aCGH provides a much higher resolution in targeted gene regions to detect copy number changes within single gene or single exon. A custom-designed oligonucleotide aCGH platform (MitoMet(®)) has been developed to provide tiled coverage of the entire 16.6-kb mitochondrial genome and high-density coverage of a set of nuclear genes associated with metabolic and mitochondrial related disorders, for quick evaluation of copy number changes in both genomes (1). The high-density probes in mitochondrial genome on the MitoMet(®) array allow estimation of mtDNA deletion breakpoints and deletion heteroplasmy (2). This technology is particularly useful as a complementary diagnostic test to detect large deletions in genes related to mitochondrial disorders. Topics: Carbocyanines; Comparative Genomic Hybridization; Deoxycytosine Nucleotides; DNA Restriction Enzymes; DNA, Mitochondrial; Genome, Mitochondrial; Humans; Mitochondrial Diseases; Oligonucleotide Array Sequence Analysis; Staining and Labeling | 2012 |
An integrated imaging approach to the study of oxidative stress generation by mitochondrial dysfunction in living cells.
The mechanisms of action of many environmental agents commonly involve oxidative stress resulting from mitochondrial dysfunction. Zinc is a common environmental metallic contaminant that has been implicated in a variety of oxidant-dependent toxicological responses. Unlike ions of other transition metals such as iron, copper, and vanadium, Zn(2+) does not generate reactive oxygen species (ROS) through redox cycling.. To characterize the role of oxidative stress in zinc-induced toxicity.. We used an integrated imaging approach that employs the hydrogen peroxide (H2O2)-specific fluorophore Peroxy Green 1 (PG1), the mitochondrial potential sensor 5,5 ,6,6 -tetrachloro-1,1 ,3,3 -tetraethylbenzimidazolylcarbocyanine iodide (JC-1), and the mitochondria-targeted form of the redox-sensitive genetically encoded fluorophore MTroGFP1 in living cells.. Zinc treatment in the presence of the Zn(2+) ionophore pyrithione of A431 skin carcinoma cells preloaded with the H(2)O(2)-specific indicator PG1 resulted in a significant increase in H(2)O(2) production that could be significantly inhibited with the mitochondrial inhibitor carbonyl cyanide 3-chlorophenylhydrazone. Mitochondria were further implicated as the source of zinc-induced H(2)O(2) formation by the observation that exposure to zinc caused a loss of mitochondrial membrane potential. Using MTroGFP1, we showed that zinc exposure of A431 cells induces a rapid loss of reducing redox potential in mitochondria. We also demonstrated that zinc exposure results in rapid swelling of mitochondria isolated from mouse hearts.. Taken together, these findings show a disruption of mitochondrial integrity, H(2)O(2) formation, and a shift toward positive redox potential in cells exposed to zinc. These data demonstrate the utility of real-time, live-cell imaging to study the role of oxidative stress in toxicological responses. Topics: Benzimidazoles; Carbocyanines; Carbonyl Cyanide m-Chlorophenyl Hydrazone; Environmental Health; Fluorescent Dyes; Hazardous Substances; Humans; Hydrogen Peroxide; Membrane Potential, Mitochondrial; Mitochondrial Diseases; Oxidative Stress; Reactive Oxygen Species; Tumor Cells, Cultured; Zinc | 2010 |
Mitochondrial mix: combined approach to visualizing oxidative stress in real time.
Topics: Benzimidazoles; Carbocyanines; Carbonyl Cyanide m-Chlorophenyl Hydrazone; Environmental Health; Fluorescent Dyes; Hazardous Substances; Humans; Hydrogen Peroxide; Membrane Potential, Mitochondrial; Mitochondrial Diseases; Oxidative Stress; Reactive Oxygen Species; Tumor Cells, Cultured; Zinc | 2010 |
Nuclear gene expression changes due to mitochondrial dysfunction in ARPE-19 cells: implications for age-related macular degeneration.
To measure changes in nuclear gene expression resulting from mitochondrial dysfunction in retinal pigment epithelial cells.. ARPE-19 retinal pigment epithelial cells were depleted of their mitochondrial (mt)DNA by passaging in a low concentration of ethidium bromide. Loss of mitochondrial DNA was determined by uridine auxotrophy and quantitative real-time polymerase chain reaction of isolated DNA. Loss of mitochondrial membrane potential was estimated by uptake of JC-1. Changes in nuclear gene expression were determined by quantitative real-time reverse transcription-polymerase chain reaction of isolated total RNA from ethidium-bromide-treated and untreated cells. Morphologic and phenotypic changes were determined by phase-contrast microscopy, sensitivity to the oxidant tert-butyl hydroperoxide (tBH), and invasion assay.. ARPE-19 cells became auxotrophic for growth on uridine after eight passages in 50 ng/mL ethidium bromide. Quantitative PCR revealed almost complete loss of mitochondrial DNA (rho(0) cells). Uptake of JC-1 was reduced in the rho(0) cells, indicating reduction of mitochondrial membrane potential. Quantitative RT-PCR measured increased expression of genes coding for drusen components, lipid transport, extracellular matrix components, and responses to inflammation in the rho(0) cells. The rho(0) cells also exhibited an increased sensitivity to killing by tBH and increased migration and invasion through solubulized basement membrane-coated tissue culture inserts.. ARPE-19 cells respond to loss of mitochondrial function by changes in nuclear gene expression that resemble changes observed in age-related macular degeneration. The results lead to the hypothesis that loss of mitochondrial function with age and resultant changes in nuclear gene expression may explain some of the changes in the macula that are associated with the known clinical manifestations of age-related macular degeneration. Topics: Benzimidazoles; Carbocyanines; Cell Survival; Cells, Cultured; DNA, Mitochondrial; Down-Regulation; Ethidium; Fluorescent Dyes; Gene Expression Regulation; Humans; Macular Degeneration; Membrane Potentials; Mitochondrial Diseases; Nuclear Proteins; Pigment Epithelium of Eye; Reverse Transcriptase Polymerase Chain Reaction; tert-Butylhydroperoxide | 2005 |