carbocyanines and Kidney-Neoplasms

carbocyanines has been researched along with Kidney-Neoplasms* in 3 studies

Reviews

1 review(s) available for carbocyanines and Kidney-Neoplasms

ArticleYear
Heptamethine Cyanine Dye Mediated Drug Delivery: Hype or Hope.
    Bioconjugate chemistry, 2020, 07-15, Volume: 31, Issue:7

    This review covers the application of heptamethine cyanine dye (HMCD) mediated drug delivery. A relatively small number of HMCDs possess tumor targeting abilities, and this has spurred interest from research groups to explore them as drug delivery systems. Their tumor selectivity is primarily attributed to their uptake by certain isoforms of organic anion transporting polypeptides (OATPs) which are overexpressed in cancer tissues, although there are other possible mechanisms for the observed selectivity still under investigation. This specificity is confirmed using various cancer cell lines and is accompanied by moderate cytotoxicity. Their retention in tumor tissue is facilitated by the formation of albumin adducts as revealed by published mechanistic studies. HMCDs are also organelle selective dyes with specificity toward mitochondria and lysosomes, and with absorption and emission in the near-infrared region. This makes them valuable tools for biomedical imaging, especially in the field of fluorescence-guided tumor surgery. Furthermore, conjugating antitumor agents to HMCDs is providing novel drugs that await clinical testing. HMCD development as theranostic agents with dual tumor targeting and treatment capability signals a new approach to overcome drug resistance (mediated through evasion of efflux pumps) and systemic toxicity, the two parameters which have long plagued drug discovery.

    Topics: Antineoplastic Agents; Brain Neoplasms; Breast Neoplasms; Burkitt Lymphoma; Carbocyanines; Coloring Agents; Drug Delivery Systems; Drug Discovery; Drug Resistance, Neoplasm; Female; Humans; Kidney Neoplasms; Male; Precision Medicine; Prostatic Neoplasms

2020

Other Studies

2 other study(ies) available for carbocyanines and Kidney-Neoplasms

ArticleYear
Optical imaging of kidney cancer with novel near infrared heptamethine carbocyanine fluorescent dyes.
    The Journal of urology, 2013, Volume: 189, Issue:2

    We assessed the application of near infrared heptamethine carbocyanine dyes, including IR-783 and the synthetic analogue MHI-148, as optical imaging agents for the rapid detection of human kidney cancer.. The uptake, retention and subcellular localization of these organic dyes were investigated in cultured kidney cancer cells. Tumor specificity of dye uptake and retention was evaluated by whole body imaging of mice bearing human kidney cancer xenografts or freshly harvested clinical kidney cancer specimens. In addition, dye accumulation at the tissue and cellular levels was confirmed by ex vivo studies with results confirmed by fluorescence imaging of frozen tissue sections. Peripheral blood spiked with kidney cancer cells was stained to simulate the detection of circulating tumor cells.. Preferential uptake and retention of carbocyanine near infrared dyes was observed in cultured human kidney cancer cells, human kidney cancer cell spiked whole blood, human kidney cancer xenografts and freshly harvested human kidney cancer tissues compared to normal kidney epithelial cells and normal host organs.. We describe a new class of near infrared heptamethine carbocyanine dyes that show potential for detecting kidney cancer cells in circulating blood and kidney cancer cells in clinical specimens. Near infrared carbocyanine dyes can be further developed as dual modality agents for deep tissue imaging of localized and disseminated kidney cancer in patients.

    Topics: Animals; Carbocyanines; Diagnostic Imaging; Fluorescent Dyes; Humans; Kidney Neoplasms; Mice; Mice, Nude; Tumor Cells, Cultured

2013
Evaluation of reference-based two-color methods for measurement of gene expression ratios using spotted cDNA microarrays.
    BMC genomics, 2006, Feb-24, Volume: 7

    Spotted cDNA microarrays generally employ co-hybridization of fluorescently-labeled RNA targets to produce gene expression ratios for subsequent analysis. Direct comparison of two RNA samples in the same microarray provides the highest level of accuracy; however, due to the number of combinatorial pair-wise comparisons, the direct method is impractical for studies including large number of individual samples (e.g., tumor classification studies). For such studies, indirect comparisons using a common reference standard have been the preferred method. Here we evaluated the precision and accuracy of reconstructed ratios from three indirect methods relative to ratios obtained from direct hybridizations, herein considered as the gold-standard.. We performed hybridizations using a fixed amount of Cy3-labeled reference oligonucleotide (RefOligo) against distinct Cy5-labeled targets from prostate, breast and kidney tumor samples. Reconstructed ratios between all tissue pairs were derived from ratios between each tissue sample and RefOligo. Reconstructed ratios were compared to (i) ratios obtained in parallel from direct pair-wise hybridizations of tissue samples, and to (ii) reconstructed ratios derived from hybridization of each tissue against a reference RNA pool (RefPool). To evaluate the effect of the external references, reconstructed ratios were also calculated directly from intensity values of single-channel (One-Color) measurements derived from tissue sample data collected in the RefOligo experiments. We show that the average coefficient of variation of ratios between intra- and inter-slide replicates derived from RefOligo, RefPool and One-Color were similar and 2 to 4-fold higher than ratios obtained in direct hybridizations. Correlation coefficients calculated for all three tissue comparisons were also similar. In addition, the performance of all indirect methods in terms of their robustness to identify genes deemed as differentially expressed based on direct hybridizations, as well as false-positive and false-negative rates, were found to be comparable.. RefOligo produces ratios as precise and accurate as ratios reconstructed from a RNA pool, thus representing a reliable alternative in reference-based hybridization experiments. In addition, One-Color measurements alone can reconstruct expression ratios without loss in precision or accuracy. We conclude that both methods are adequate options in large-scale projects where the amount of a common reference RNA pool is usually restrictive.

    Topics: Adenocarcinoma; Breast Neoplasms; Carbocyanines; Carcinoma, Renal Cell; DNA, Complementary; DNA, Neoplasm; Female; Fluorescent Dyes; Gene Expression Regulation, Neoplastic; Humans; Kidney Neoplasms; Male; Nucleic Acid Hybridization; Oligonucleotide Array Sequence Analysis; Prostatic Neoplasms

2006