carbocyanines has been researched along with Infarction--Middle-Cerebral-Artery* in 3 studies
3 other study(ies) available for carbocyanines and Infarction--Middle-Cerebral-Artery
Article | Year |
---|---|
In vivo optical imaging of ischemic blood-brain barrier disruption.
The blood-brain barrier (BBB) disruption following cerebral ischemia (stroke) contributes to the development of life-threatening brain edema. Recent studies suggested that the ischemic BBB disruption is not uniform throughout the affected brain region. The aim of this study was to establish in vivo optical imaging methods to assess the size selectivity and spatial distribution of the BBB disruption after a focal cerebral ischemia. The BBB permeability was assessed in mice subjected to a 60-min middle cerebral artery occlusion and 24 h of reperfusion using in vivo time domain near-infrared optical imaging after contrast enhancement with two tracers of different molecular size, Cy5.5 (1 kDa) and Cy5.5 conjugated with bovine serum albumin (BSA) (67 kDa). Volumetric reconstruction of contrast-enhanced brain areas in vivo and ex vivo indicated that the BSA-Cy5.5-enhancement is identical to the volume of infarct determined by TTC staining, whereas the volume of enhancement with Cy5.5 was 40% greater. The volume differential between areas of BBB disruption for small and large-size molecules could be useful for determining the size of peri-infarct tissues (penumbra) that can respond to neuroprotective therapies. Topics: Animals; Blood-Brain Barrier; Brain; Carbocyanines; Cattle; Cone-Beam Computed Tomography; Contrast Media; Disease Models, Animal; Fluorescence; Histocytochemistry; Humans; Infarction, Middle Cerebral Artery; Ischemic Attack, Transient; Male; Mice; Mice, Inbred Strains; Microtomy; Molecular Imaging; Reperfusion Injury; Serum Albumin; Tetrazolium Salts | 2011 |
Cyanine dyes attenuate cerebral ischemia and reperfusion injury in rats.
Some photosensitizing cyanine dyes act on the immune system to enhance the phagocytic capacity of macrophages. In this study, we examined whether these dyes have neurotrophin-like activities and neuroprotective effects in vitro and in vivo. By screening more than 250 cyanine dyes, we found that NK-4 and NK-150, which belong to a group of pentamethine trinuclear cyanine dyes, significantly potentiated nerve growth factor (NGF)-primed neurite outgrowth of PC12HS cells in nanomolar to micromolar concentrations. Both NK-4 and NK-150 showed a remarkable hydroxyl radical-scavenging activity using an in vitro electron spin resonance (ESR)-based technique. They also effectively scavenged peroxy radicals, and in addition, NK-4 acted on superoxides to a similar extent as ascorbate. In vivo, NK-4 and NK-150 prevented cerebral ischemic injury induced by 2 h middle cerebral artery occlusion (MCAO) and 24 h reperfusion in rats. Dyes were intravenously administrated twice 1 h after the occlusion and immediately after the start of reperfusion. NK-4 and NK-150 (100 µg/kg) reduced cerebral infarct volumes by 57.0% and 46.0%, respectively. Those dyes also decreased brain swelling in the ischemic semispheres. As a result, administration of NK-4 and NK-150 provided substantial improvements in MCAO-induced neurological deficits in a dose-dependent manner. These results suggest that NK-4 and NK-150 effectively prevented ischemia-induced brain injury through their potent neurotrophin-like activity as well as antioxidative activity. Topics: Animals; Antioxidants; Brain; Brain Ischemia; Carbocyanines; Cell Line; Cerebral Infarction; Dose-Response Relationship, Drug; Edema; Electron Spin Resonance Spectroscopy; Infarction, Middle Cerebral Artery; Male; Nerve Growth Factor; Neurites; Neuroprotective Agents; Quinolines; Rats; Rats, Sprague-Dawley; Reactive Oxygen Species; Reperfusion Injury | 2010 |
Hematopoietic origin of microglial and perivascular cells in brain.
Bone marrow (BM)-derived cells differentiate into a wide variety of cell types. BM contains a heterogeneous population of stem and progenitor cells including hematopoietic stem cells, marrow stromal cells, and perhaps other progenitor cells. To establish unequivocally the transdifferentiation capability of a hematopoietic cell to a nonhematopoietic cell (endothelial cells, neurons, and glial cells), it is imperative to demonstrate that a single cell or clone of that single cell (clonal analysis) differentiates into cells comprising vessels or other cells in the brain.. We generated mice that exhibited a high level of hematopoietic reconstitution from a single enhanced green fluorescent protein (EGFP) stem cell. To achieve this, we combined FACS sorting and cell culture to generate a population of cells derived from a single hematopoietic stem cell (Lin-, CD34-, c-kit+, and Sca-1+). Clonal populations of cells were then transplanted into lethally irradiated recipient mice. After 3-4 months of engraftment, some mice underwent middle cerebral artery (MCA) suture occlusion. EGFP immunocytochemistry and dual labeling was performed with cell-specific markers on tissue from various time points.. In all transplanted mice, EGFP+ highly ramified cells were seen in the brain parenchyma. These cells stained with RCA120 lectin and had the characteristics of parenchymal microglial cells. In brains without infarction and in uninfarcted brain regions of mice that underwent MCA occlusion, there were many EGFP+ cells in a perivascular distribution, associated with both small and larger blood vessels. The cells were tightly apposed to the vessel wall and some had long processes that enveloped the endothelial cells. After MCA occlusion, there was an influx of EGFP expressing cells in the ischemic tissue that colocalized with the "neovascularization." These EGFP+ cells were wrapped around endothelial cells in an albuminal location and did not coexpress von Willebrand Factor or CD31. We detected rare dual-labeled EGFP and NeuN-expressing cells. We detected two staining patterns. The more frequent pattern was phagocytosis of NeuN cells by EGFP expressing cells. However, we also detected rarer cells where the EGFP and NeuN appeared to be colocalized by confocal microscopy.. HSC differentiate into parenchymal microglial cells and perivascular cells in the brain. The numbers of these cells increase after cerebral ischemia. The HSC is therefore one source of parenchymal microglial cells and a source for perivascular cells. After a cerebral infarction, there are rare HSC-derived cells that stain with the neuronal marker, NeuN. However, the more common pattern appears to represent phagocytosis of damaged neurons by EGFP+ microglial cells. Topics: Animals; Antigens; Benzimidazoles; Brain; Carbocyanines; Cell Differentiation; Cells, Cultured; Endothelial Cells; Endothelium, Vascular; Female; Flow Cytometry; Functional Laterality; Green Fluorescent Proteins; Hematopoiesis; Hematopoietic Stem Cell Transplantation; Hematopoietic Stem Cells; Immunohistochemistry; Infarction, Middle Cerebral Artery; Luminescent Proteins; Male; Mice; Mice, Inbred C57BL; Mice, Transgenic; Microglia; Microscopy, Confocal; Neurons; Phosphopyruvate Hydratase; Plant Lectins; Platelet Endothelial Cell Adhesion Molecule-1; Radiation Chimera; Time Factors; von Willebrand Factor | 2004 |