carbocyanines has been researched along with Gliosarcoma* in 6 studies
6 other study(ies) available for carbocyanines and Gliosarcoma
Article | Year |
---|---|
Uniform brain tumor distribution and tumor associated macrophage targeting of systemically administered dendrimers.
Effective blood-brain tumor barrier penetration and uniform solid tumor distribution can significantly enhance therapeutic delivery to brain tumors. Hydroxyl-functionalized, generation-4 poly(amidoamine) (PAMAM) dendrimers, with their small size, near-neutral surface charge, and the ability to selectively localize in cells associated with neuroinflammation may offer new opportunities to address these challenges. In this study we characterized the intracranial tumor biodistribution of systemically delivered PAMAM dendrimers in an intracranial rodent gliosarcoma model using fluorescence-based quantification methods and high resolution confocal microscopy. We observed selective and homogeneous distribution of dendrimer throughout the solid tumor (∼6 mm) and peritumoral area within fifteen minutes after systemic administration, with subsequent accumulation and retention in tumor associated microglia/macrophages (TAMs). Neuroinflammation and TAMs have important growth promoting and pro-invasive effects in brain tumors. The rapid clearance of systemically administered dendrimers from major organs promises minimal off-target adverse effects of conjugated drugs. Therefore, selective delivery of immunomodulatory molecules to TAM, using hydroxyl PAMAM dendrimers, may hold promise for therapy of glioblastoma. Topics: Animals; Blood-Brain Barrier; Brain Neoplasms; Carbocyanines; Dendrimers; Drug Carriers; Drug Delivery Systems; Female; Glioblastoma; Gliosarcoma; Inflammation; Macrophages; Microscopy, Confocal; Microscopy, Fluorescence; Rats; Rats, Inbred F344; Tissue Distribution | 2015 |
Fluorescent nanoparticle uptake for brain tumor visualization.
Accurate delineation of tumor margins is vital to the successful surgical resection of brain tumors. We have previously developed a multimodal nanoparticle CLIO-Cy5.5, which is detectable by both magnetic resonance imaging and fluorescence, to assist in intraoperatively visualizing tumor boundaries. Here we examined the accuracy of tumor margin determination of orthotopic tumors implanted in hosts with differing immune responses to the tumor. Using a nonuser-based signal intensity method applied to fluorescent micrographs of 9L gliosarcoma green fluorescent protein (GFP) tumors, mean overestimations of 2 and 24 microm were obtained using Cy5.5 fluorescence, compared to the true tumor margin determined by GFP fluorescence, in nude mice and rats, respectively. To resolve which cells internalized the nanoparticle and to quantitate degree of uptake, tumors were disaggregated and cells were analyzed by flow cytometry and fluorescence microscopy. Nanoparticle uptake was seen in both CD11b+ cells (representing activated microglia and macrophages) and tumor cells in both animal models by both methods. CD11b+ cells were predominantly found at the tumor margin in both hosts, but were more pronounced at the margin in the rat model. Additional metastatic (CT26 colon) and primary (Gli36 glioma) brain tumor models likewise demonstrated that the nanoparticle was internalized both by tumor cells and by host cells. Together, these observations suggest that fluorescent nanoparticles provide an accurate method of tumor margin estimation based on a combination of tumor cell and host cell uptake for primary and metastatic tumors in animal model systems and offer potential for clinical translation. Topics: Animals; Brain Neoplasms; Carbocyanines; CD11b Antigen; Cell Line, Tumor; Female; Fluorescent Dyes; Gliosarcoma; Green Fluorescent Proteins; Humans; Male; Mice; Mice, Nude; Microscopy, Fluorescence; Nanostructures; Rats | 2006 |
Distribution of liposomes into brain and rat brain tumor models by convection-enhanced delivery monitored with magnetic resonance imaging.
Although liposomes have been used as a vehicle for delivery of therapeutic agents in oncology, their efficacy in targeting brain tumors has been limited due to poor penetration through the blood-brain barrier. Because convection-enhanced delivery (CED) of liposomes may improve the therapeutic index for targeting brain tumors, we conducted a three-stage study: stage 1 established the feasibility of using in vivo magnetic resonance imaging (MRI) to confirm adequate liposomal distribution within targeted regions in normal rat brain. Liposomes colabeled with gadolinium (Gd) and a fluorescent indicator, 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine-5,5'-disulfonic acid [DiI-DS; formally DiIC(18)(3)-DS], were administered by CED into striatal regions. The minimum concentration of Gd needed for monitoring, correlation of infused volume with distribution volume, clearance of infused liposome containing Gd and DiI-DS (Lip/Gd/DiI-DS), and potential local toxicity were evaluated. After determination of adequate conditions for MRI detection in normal brain, stage 2 evaluated the feasibility of in vivo MRI monitoring of liposomal distribution in C6 and 9L-2 rat glioma models. In both models, the distribution of Lip/Gd/DiI-DS covering the tumor mass was well defined and monitored with MRI. Stage 3 was designed to develop a clinically relevant treatment strategy in the 9L-2 model by infusing liposome containing Gd (Lip/Gd), prepared in the same size as Lip/Gd/DiI-DS, with Doxil, a liposomal drug of similar size used to treat several cancers. MRI detection of Lip/Gd coadministered with Doxil provided optimum CED parameters for complete coverage of 9L-2 tumors. By permitting in vivo monitoring of therapeutic distribution in brain tumors, this technique optimizes local drug delivery and may provide a basis for clinical applications in the treatment of malignant glioma. Topics: Animals; Antibiotics, Antineoplastic; Brain; Brain Neoplasms; Carbocyanines; Convection; Doxorubicin; Fluorescent Dyes; Gadolinium; Glioma; Gliosarcoma; Liposomes; Magnetic Resonance Imaging; Male; Rats; Rats, Sprague-Dawley; Tissue and Organ Procurement | 2004 |
Near-infrared fluorescent imaging of tumor apoptosis.
Noninvasive imaging using radioactive annexin V is an emerging strategy for the assessment of cell death in vivo (F. G. Blankenberg, and H. W. Strauss. Apoptosis, 6: 117-123, 2001.). Therefore, we investigated whether annexin V labeled with the fluorophore Cy5.5 (Cy) could serve as a probe for imaging of tumor apoptosis using near infrared fluorescence (NIRF). We prepared active Cy-annexin (an equimolar dye:protein ratio) that bound to apoptotic Jurkat T cells and an inactive Cy-annexin probe (>2 dyes/mol protein) that did not. Active Cy annexin was used to image a 9L gliosarcoma, constitutively expressing green fluorescent protein marker, and the CR8 variant of Lewis lung carcinoma, stably transfected to express DsRed2. The expression of transfected fluorescent protein provided an indication of tumor margins and a means of defining tumor-associated NIRF signal intensity with both tumor models. Tumors were imaged with and without cyclophosphamide treatment. In both tumor models active Cy-annexin V tumor NIRF signal increased two to three times after the treatment. Tumor NIRF signal developed by 75 min after active Cy-annexin injection and remained for a 20-h observation period. Inactive annexin V was used as a control in the CR8 carcinoma experiments and resulted in a low nonspecific signal. With the 9L gliomosacrcoma model, active Cy-annexin V bound to both tumor cells (Cy-annexin V staining only) and endothelial cells (costained with Cy-annexin V and antibody to the endothelial marker CD31). Our results demonstrate that active Cy-annexin can be used as a NIRF probe to image apoptosis from outside an intact living animal and may provide nonradioactive method of measuring the antiproliferative effects of cancer chemotherapeutic regimens. Topics: Animals; Annexin A5; Apoptosis; Carbocyanines; Carcinoma, Lewis Lung; Cyclophosphamide; Female; Fluorescent Dyes; Gliosarcoma; Green Fluorescent Proteins; Humans; Jurkat Cells; Luminescent Proteins; Mice; Mice, Nude; Rats; Spectroscopy, Near-Infrared; Transfection | 2003 |
A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation.
The determination of brain tumor margins both during the presurgical planning phase and during surgical resection has long been a challenging task in the therapy of brain tumor patients. Using a model of gliosarcoma with stably green fluorescence protein-expressing 9L glioma cells, we explored a multimodal (near-infrared fluorescent and magnetic) nanoparticle as a preoperative magnetic resonance imaging contrast agent and intraoperative optical probe. Key features of nanoparticle metabolism, namely intracellular sequestration by microglia and the combined optical and magnetic properties of the probe, allowed delineation of brain tumors both by preoperative magnetic resonance imaging and by intraoperative optical imaging. This prototypical multimodal nanoparticle has unique properties that may allow radiologists and neurosurgeons to see the same probe in the same cells and may offer a new approach for obtaining tumor margins. Topics: Animals; Brain Neoplasms; Carbocyanines; Ferric Compounds; Fluorescent Dyes; Gliosarcoma; Magnetic Resonance Imaging; Nanotechnology; Particle Size; Rats; Rats, Inbred F344; Subcellular Fractions | 2003 |
Internalization of microbubbles by tumor cells in vivo and in vitro.
Lipid-coated microbubbles (LCM) administered intravenously (i.v.) to rats bearing brain tumor, specifically enhance tumor visualization by ultrasound [1]. In order to understand the basis for this observation, we have examined the interactions of LCM with glioblastoma (C6) and gliosarcoma (9L) tumor cells in vivo and in vitro. LCM and LCM labeled with the fluorescent lipophilic dye 3,3'-dioctadecyloxacarbocyanine perchlorate (diO) were administered to rats bearing brain tumor. LCM and diO-labeled LCM were found principally at the tumor site with no evidence of label in the surrounding normal brain tissue. Analysis of the tumor by confocal laser scanning microscopy revealed that labeled LCM were inside the tumor cells. Similar analysis of LCM interactions with C6 and 9L cells in culture showed that LCM first adsorb at the surface of the cells, and with time became localized inside the cells. Binding and internalization proceeded faster at 37 degrees C than at room temperature (RT). Staining of live cells with N-(3-((2,4-dinitrophenyl)amino)propyl)-N-(3-aminopropyl) methylamine dihydrochloride (DAMP), a dye that recognizes acidic compartments, showed that the majority of internalized LCM was associated with compartments containing DAMP. If the same uptake mechanism were operative in vivo, it would indicate that a portion of LCM bypasses the reticuloendothelial system and become endocytosed directly by tumor cells. Topics: Animals; Brain Neoplasms; Carbocyanines; Craniotomy; Dinitrobenzenes; Endocytosis; Fluorescent Dyes; Glioma; Gliosarcoma; Liposomes; Microscopy, Confocal; Microscopy, Fluorescence; Microspheres; Neoplasm Transplantation; Organelles; Rats; Rats, Inbred F344; Rats, Sprague-Dawley; Staining and Labeling; Tumor Cells, Cultured | 1995 |