capsazepine and Pain

capsazepine has been researched along with Pain* in 62 studies

Reviews

3 review(s) available for capsazepine and Pain

ArticleYear
The potential of transient receptor potential vanilloid type 1 channel modulators for the treatment of pain.
    Journal of medicinal chemistry, 2007, May-31, Volume: 50, Issue:11

    Topics: Analgesics; Animals; Capsaicin; Humans; Pain; TRPV Cation Channels

2007
Mechanism of action of capsaicin-like molecules on sensory neurons.
    Life sciences, 1992, Volume: 51, Issue:23

    Capsaicin produces pain by selectively activating polymodal nociceptive neurons. This involves a membrane depolarization and the opening of a unique, cation-selective, ion channel which can be blocked by ruthenium red. The capsaicin-induced activation is mediated by a specific membrane receptor which can be selectively and competitively antagonised by capsazepine. Repetitive administrations of capsaicin produces a desensitization and an inactivation of sensory neurons. Several mechanisms are involved. These include receptor inactivation, block of voltage activated calcium channels, intracellular accumulation of ions leading to osmotic changes and activation of proteolytic enzyme processes. Systemic and topical capsaicin produces a reversible antinociceptive and antiinflammatory action after an initial undesirable algesic effect. Capsaicin analogues, such as olvanil, have similar properties with minimal initial pungency. Systemic capsaicin produces antinociception by activating capsaicin receptors on afferent nerve terminals in the spinal cord. Spinal neurotransmission is subsequently blocked by a prolonged inactivation of sensory neurotransmitter release. Local or topical application of capsaicin blocks C-fibre conduction and inactivates neuropeptide release from peripheral nerve endings. These mechanisms account for localized antinociception and the reduction of neurogenic inflammation respectively.

    Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Calcium Channels; Capsaicin; Cell Membrane; Humans; Neurons, Afferent; Nociceptors; Pain; Pain Threshold; Receptors, Drug

1992
Capsaicin: gaps in our knowledge start to be filled.
    Trends in neurosciences, 1991, Volume: 14, Issue:7

    Topics: Animals; Axonal Transport; Capsaicin; Nerve Degeneration; Nerve Endings; Nerve Fibers; Nerve Growth Factors; Neurons, Afferent; Pain; Receptors, Drug; Sciatic Nerve; Silver Nitrate; Spinal Cord; Staining and Labeling

1991

Other Studies

59 other study(ies) available for capsazepine and Pain

ArticleYear
Potent dual MAGL/FAAH inhibitor AKU-005 engages endocannabinoids to diminish meningeal nociception implicated in migraine pain.
    The journal of headache and pain, 2023, Apr-11, Volume: 24, Issue:1

    Engaging the endocannabinoid system through inhibition of monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH), degrading endocannabinoids (endoCBs) 2-arachidonoylglycerol (2-AG) and anandamide (AEA), was proposed as a promising approach to ameliorate migraine pain. However, the activity of MAGL and FAAH and action of endoCB on spiking activity of meningeal afferents, from which migraine pain originates, has not been explored thus far. Therefore, we here explored the analgesic effects of endoCB enhancement in rat and human meningeal tissues.. Both MAGL and FAAH activity and local 2-AG and AEA levels were measured by activity-based protein profiling (ABPP) and LC-MS/MS, respectively, in rat meninges obtained from hemiskulls of P38-P40 Wistar rats and human meninges from elderly patients undergoing non-migraine related neurosurgery. The action on endoCBs upon administration of novel dual MAGL/FAAH inhibitor AKU-005 on meningeal afferents excitability was tested by investigating paired KCl-induced spiking and validation with local (co-)application of either AEA or 2-AG. Finally, the specific TRPV1 agonist capsaicin and blocker capsazepine were tested.. The basal level of 2-AG exceeded that of AEA in rat and human meninges. KCl-induced depolarization doubled the level of AEA. AKU-005 slightly increased spontaneous spiking activity whereas the dual MAGL/FAAH inhibitor significantly decreased excitation of nerve fibres induced by KCl. Similar inhibitory effects on meningeal afferents were observed with local applications of 2-AG or AEA. The action of AKU-005 was reversed by CB1 antagonist AM-251, implying CB1 receptor involvement in the anti-nociceptive effect. The inhibitory action of AEA was also reversed by AM-251, but not with the TRPV1 antagonist capsazepine. Data cluster analysis revealed that both AKU-005 and AEA largely increased long-term depression-like meningeal spiking activity upon paired KCl-induced spiking.. In the meninges, high anti-nociceptive 2-AG levels can tonically counteract meningeal signalling, whereas AEA can be engaged on demand by local depolarization. AEA-mediated anti-nociceptive effects through CB1 receptors have therapeutic potential. Together with previously detected MAGL activity in trigeminal ganglia, dual MAGL/FAAH inhibitor AKU-005 appears promising as migraine treatment.

    Topics: Aged; Amidohydrolases; Animals; Carbamates; Chromatography, Liquid; Endocannabinoids; Humans; Migraine Disorders; Monoacylglycerol Lipases; Monoglycerides; Nociception; Pain; Rats; Rats, Wistar; Tandem Mass Spectrometry

2023
Intrarectal Capsazepine Administration Modulates Colonic Mucosal Health in Mice.
    International journal of molecular sciences, 2022, Aug-24, Volume: 23, Issue:17

    Antagonism of transient receptor potential vanniloid-1 (TRPV1) and desensitization of transient receptor potential ankyrin-1 (TRPA1) nociceptors alleviate inflammatory bowel diseases (IBD)-associated chronic pain. However, there is limited literature available about their role in regulating the mucosal layer, its interaction with host physiology, and luminal microbial community. The present study focuses on the effects' intra rectal administration of capsazepine (modulator of TRPA1/TRPV1 expressing peptidergic sensory neurons) on colonic mucus production and gut health. We performed histological analysis, gut permeability alteration, gene expression changes, metabolite profiling, and gut microbial abundance in the ileum, colon, and cecum content of these animals. Intra rectal administration of capsazepine modulates TRPA1/TRPV1-positive nociceptors (behavioral pain assays) and resulted in damaged mucosal lining, increased gut permeability, and altered transcriptional profile of genes for goblet cell markers, mucus regulation, immune response, and tight junction proteins. The damage to mucosal lining prevented its role in enterosyne (short chain fatty acids) actions. These results suggest that caution must be exercised before employing TRPA1/TRPV1 modulation as a therapeutic option to alleviate pain caused due to IBD.

    Topics: Animals; Capsaicin; Colon; Inflammatory Bowel Diseases; Mice; Pain; Transient Receptor Potential Channels; TRPA1 Cation Channel; TRPV Cation Channels

2022
Inhibition of Spinal TRPV1 Reduces NMDA Receptor 2B Phosphorylation and Produces Anti-Nociceptive Effects in Mice with Inflammatory Pain.
    International journal of molecular sciences, 2021, Oct-16, Volume: 22, Issue:20

    Transient receptor potential vanilloid 1 (TRPV1) has been implicated in peripheral inflammation and is a mediator of the inflammatory response to various noxious stimuli. However, the interaction between TRPV1 and

    Topics: Analgesics; Animals; Capsaicin; Carrageenan; Disease Models, Animal; Glutamic Acid; Hyperalgesia; Inflammation; Male; Mice; Mice, Inbred ICR; Pain; Phosphorylation; Receptors, N-Methyl-D-Aspartate; Spinal Cord; TRPV Cation Channels

2021
Comparison of joint degeneration and pain in male and female mice in DMM model of osteoarthritis.
    Osteoarthritis and cartilage, 2021, Volume: 29, Issue:5

    While the prevalence of radiographic and symptomatic osteoarthritis (OA) is higher in women, male mice are more frequently used in animal experiments to explore its pathogenesis or drug efficacy. In this study, we examined whether sexual dimorphism affects pain and joint degeneration in destabilization of the medial meniscus (DMM) mouse model.. DMM or sham surgery was performed on the knee of male and female C57BL/6 mice. Joint damage was assessed by safranin O staining and scored using the Osteoarthritis Research Society International (OARSI) scoring system. Von Frey hair, incapacitance, and rotarod tests were conducted to measure joint pain. The analgesic effect of capsazepine (CPZ), a TRPV1 antagonist, was compared between male and female mice.. Histology and OARSI scoring analysis showed that cartilage degeneration developed, and progressed in both male and female DMM groups, however, damage was less severe in females at the late stage of OA. Pain behavior, as measured by mechanical allodynia, was displayed for longer in male DMM mice compared to females. Incapacitance data showed that CPZ significantly reduced DMM-induced pain in male mice but not in female mice. Immunofluorescence microscopy analysis demonstrated that DMM surgery increased the expression of TRPV1 in both female and male dorsal root ganglion (DRG). Injection of CPZ significantly suppressed TRPV1 expression in the DRG of male mice only.. Joint damage develops comparably in both female and male mice after DMM although it progresses less in females. There was a subtle sex difference in pain behaviors and analgesic efficacy of a TRPV1 antagonist, which was accompanied by a differential regulation of TPRV1.

    Topics: Animals; Behavior, Animal; Capsaicin; Cartilage, Articular; Disease Models, Animal; Female; Ganglia, Spinal; Male; Mice, Inbred C57BL; Microscopy, Fluorescence; Osteoarthritis; Pain; Sensory System Agents; Sex Factors; Stifle; TRPV Cation Channels

2021
Capsazepine decreases corneal pain syndrome in severe dry eye disease.
    Journal of neuroinflammation, 2021, May-11, Volume: 18, Issue:1

    Dry eye disease (DED) is a multifactorial disease of the ocular surface accompanied by neurosensory abnormalities. Here, we evaluated the effectiveness of transient receptor potential vanilloid-1 (TRPV1) blockade to alleviate ocular pain, neuroinflammation, and anxiety-like behavior associated with severe DED.. Chronic DED was induced by unilateral excision of the Harderian and extraorbital lacrimal glands of adult male mice. Investigations were conducted at 21 days after surgery. The mRNA levels of TRPV1, transient receptor potential ankyrin-1 (TRPA1), and acid-sensing ion channels 1 and 3 (ASIC1 and ASIC3) in the trigeminal ganglion (TG) were evaluated by RNAscope in situ hybridization. Multi-unit extracellular recording of ciliary nerve fiber activity was used to monitor spontaneous and stimulated (cold, heat, and acid) corneal nerve responsiveness in ex vivo eye preparations. DED mice received topical instillations of the TRPV1 antagonist (capsazepine) twice a day for 2 weeks from d7 to d21 after surgery. The expression of genes involved in neuropathic and inflammatory pain was evaluated in the TG using a global genomic approach. Chemical and mechanical corneal nociception and spontaneous ocular pain were monitored. Finally, anxiety-like behaviors were assessed by elevated plus maze and black and white box tests.. First, in situ hybridization showed DED to trigger upregulation of TRPV1, TRPA1, ASIC1, and ASIC3 mRNA in the ophthalmic branch of the TG. DED also induced overexpression of genes involved in neuropathic and inflammatory pain in the TG. Repeated instillations of capsazepine reduced corneal polymodal responsiveness to heat, cold, and acidic stimulation in ex vivo eye preparations. Consistent with these findings, chronic capsazepine instillation inhibited the upregulation of genes involved in neuropathic and inflammatory pain in the TG of DED animals and reduced the sensation of ocular pain, as well as anxiety-like behaviors associated with severe DED.. These data provide novel insights on the effectiveness of TRPV1 antagonist instillation in alleviating abnormal corneal neurosensory symptoms induced by severe DED, opening an avenue for the repositioning of this molecule as a potential analgesic treatment for patients suffering from chronic DED.

    Topics: Animals; Capsaicin; Cornea; Dry Eye Syndromes; Male; Mice; Mice, Inbred C57BL; Pain; Syndrome; TRPV Cation Channels

2021
Cannabidiol increases the nociceptive threshold in a preclinical model of Parkinson's disease.
    Neuropharmacology, 2020, Volume: 163

    Medications that improve pain threshold can be useful in the pharmacotherapy of Parkinson's disease (PD). Pain is a prevalent PD's non-motor symptom with a higher prevalence of analgesic drugs prescription for patients. However, specific therapy for PD-related pain are not available. Since the endocannabinoid system is expressed extensively in different levels of pain pathway, drugs designed to target this system have promising therapeutic potential in the modulation of pain. Thus, we examined the effects of the 6-hydroxydopamine- induced PD on nociceptive responses of mice and the influence of cannabidiol (CBD) on 6-hydroxydopamine-induced nociception. Further, we investigated the pathway involved in the analgesic effect of the CBD through the co-administration with a fatty acid amide hydrolase (FAAH) inhibitor, increasing the endogenous anandamide levels, and possible targets from anandamide, i.e., the cannabinoid receptors subtype 1 and 2 (CB1 and CB2) and the transient receptor potential vanilloid type 1 (TRPV1). We report that 6-hydroxydopamine- induced parkinsonism decreases the thermal and mechanical nociceptive threshold, whereas CBD (acute and chronic treatment) reduces this hyperalgesia and allodynia evoked by 6-hydroxydopamine. Moreover, ineffective doses of either FAAH inhibitor or TRPV1 receptor antagonist potentialized the CBD-evoked antinociception while an inverse agonist of the CB1 and CB2 receptor prevented the antinociceptive effect of the CBD. Altogether, these results indicate that CBD can be a useful drug to prevent the parkinsonism-induced nociceptive threshold reduction. They also suggest that CB1 and TRPV1 receptors are important for CBD-induced analgesia and that CBD could produce these analgesic effects increasing endogenous anandamide levels.

    Topics: Amidohydrolases; Analgesics; Animals; Benzamides; Brain; Cannabidiol; Capsaicin; Carbamates; Celecoxib; Hyperalgesia; Male; Mice; Mice, Inbred C57BL; Morphine; Nociception; Oxidopamine; Pain; Parkinson Disease; Piperidines; Pyrazoles; Thienamycins

2020
Antinociceptive activity of 3β-6β-16β-trihydroxylup-20 (29)-ene triterpene isolated from Combretum leprosum leaves in adult zebrafish (Danio rerio).
    Biochemical and biophysical research communications, 2020, 12-10, Volume: 533, Issue:3

    Drugs used to treat pain are associated with adverse effects, increasing the search for new drugs as an alternative treatment for pain. Therefore, we evaluated the antinociceptive behavior and possible neuromodulation mechanisms of triterpene 3β, 6β, 16β-trihydroxylup-20(29)-ene (CLF-1) isolated from Combretum leprosum leaves in zebrafish. Zebrafish (n = 6/group) were pretreated with CLF-1 (0.1 or 0.3 or 1.0 mg/mL; i.p.) and underwent nociception behavior tests. The antinociceptive effect of CFL-1 was tested for modulation by opioid (naloxone), nitrergic (L-NAME), nitric oxide and guanylate cyclase synthesis inhibitor (methylene blue), NMDA (Ketamine), TRPV1 (ruthenium red), TRPA1 (camphor), or ASIC (amiloride) antagonists. The corneal antinociceptive effect of CFL-1 was tested for modulation by TRPV1 (capsazepine). The effect of CFL-1 on zebrafish locomotor behavior was evaluated with the open field test. The acute toxicity study was conducted. CLF-1 reduced nociceptive behavior and corneal in zebrafish without mortalities and without altering the animals' locomotion. Thus, CFL-1 presenting pharmacological potential for the treatment of acute pain and corneal pain, and this effect is modulated by the opioids, nitrergic system, NMDA receptors and TRP and ASIC channels.

    Topics: Acid Sensing Ion Channels; Amiloride; Analgesics; Animals; Camphor; Capsaicin; Combretum; Dose-Response Relationship, Drug; Female; Ketamine; Locomotion; Male; Methylene Blue; Naloxone; NG-Nitroarginine Methyl Ester; Nociception; Pain; Pain Measurement; Plant Extracts; Plant Leaves; Receptors, N-Methyl-D-Aspartate; Ruthenium Red; Triterpenes; TRPV Cation Channels; Zebrafish; Zebrafish Proteins

2020
The
    Toxins, 2019, 11-27, Volume: 11, Issue:12

    Accidental contact with caterpillar bristles causes local symptoms such as severe pain, intense heat, edema, erythema, and pruritus. However, there is little functional evidence to indicate a potential mechanism. In this study, we analyzed the biological characteristics of the crude venom from the larval stage of

    Topics: Animals; Arthropod Venoms; Behavior, Animal; Calcium Signaling; Capsaicin; Female; Ganglia, Spinal; Larva; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Nociceptors; Pain; Pain Measurement; Sebaceous Glands; TRPV Cation Channels

2019
The investigation of allosteric regulation mechanism of analgesic effect using SD rat taste bud tissue biosensor.
    Biosensors & bioelectronics, 2019, Feb-01, Volume: 126

    In this study, a taste bud tissue biosensor was prepared by a starch-sodium alginate cross-linking fixation method. Capsaicin was used as a TRPV1 noxious ion channel activator to investigate the antagonism kinetics of six different substances on capsaicin. The results showed that capsazepine, AMG517, loureirin B, and tetrahydropalmatine were all competitive allosteric regulatory ligands for capsaicin, while aconitine and anandamide were mixed allosteric regulatory ligand that combines non-competition and competition effect. Through analyzing the kinetic parameters of capsaicin and its competitive allosteric regulatory ligands, and comparing the structures between spicy substances and endocannabinoids, the importance of amide groups and similar groups in the allosteric regulation of cannabinoids (CB) receptors and analgesic mechanism was elucidated. This indicates that vanilloid activators turn on the TRPV1 ion channel to transmit only pain and other nociceptive signals, while capsaicin and its competitive ligands are capable of activating intracellular G protein/PI3K/PIP2 signaling pathways by binding to endogenous cannabinoid receptors, and then increase intracellular PIP2 levels (the increasing PIP2 can competitively replace capsaicin and other vanilloid activators), thereby closing the TRPV1 channel and exerting the analgesic effect. The elucidation of this mechanism of pain and analgesia will lay the theoretical foundation and new ideas for investigating nociceptive signal and screening potential analgesic drugs.

    Topics: Alginates; Allosteric Regulation; Analgesics; Animals; Arachidonic Acids; Biosensing Techniques; Body Temperature; Capsaicin; Cross-Linking Reagents; Electrochemical Techniques; Endocannabinoids; Fever; Pain; Polyunsaturated Alkamides; Rats, Sprague-Dawley; Starch; Taste Buds; TRPV Cation Channels

2019
Presynaptic facilitation by tetracaine of glutamatergic spontaneous excitatory transmission in the rat spinal substantia gelatinosa - Involvement of TRPA1 channels.
    Brain research, 2017, 02-15, Volume: 1657

    The amide-type local anesthetic (LA) lidocaine activates transient receptor potential (TRP) ankyrin-1 (TRPA1) channels to facilitate spontaneous l-glutamate release onto spinal substantia gelatinosa (SG) neurons, which play a crucial role in regulating nociceptive transmission. In contrast, the ester-type LA procaine reduces the spontaneous release of l-glutamate in SG neurons. In order to determine whether TRPA1 activation by LAs is specific to amide-types, we examined the actions of tetracaine, another ester-type LA, and other amide-type LAs on glutamatergic spontaneous excitatory transmission in SG neurons by focusing on TRP activation. Whole-cell patch-clamp recordings were performed on SG neurons of adult rat spinal cord slices at a holding potential of -70mV. Bath-applied tetracaine increased spontaneous excitatory postsynaptic current (sEPSC) frequency in a concentration-dependent manner. Tetracaine activity was resistant to the voltage-gated Na

    Topics: Acetanilides; Amides; Anesthetics, Local; Animals; Bupivacaine; Capsaicin; Excitatory Postsynaptic Potentials; Glutamic Acid; Levobupivacaine; Male; Neurotransmitter Agents; Pain; Patch-Clamp Techniques; Presynaptic Terminals; Prilocaine; Purines; Pyrazines; Pyridines; Rats, Sprague-Dawley; Ropivacaine; Ruthenium Red; Substantia Gelatinosa; Tetracaine; Tetrodotoxin; Tissue Culture Techniques; TRPA1 Cation Channel; TRPC Cation Channels

2017
Tris-hydroxymethyl-aminomethane enhances capsaicin-induced intracellular Ca(2+) influx through transient receptor potential V1 (TRPV1) channels.
    Journal of pharmacological sciences, 2016, Volume: 130, Issue:2

    Non-selective transient receptor potential vanilloid (TRPV) cation channels are activated by various insults, including exposure to heat, acidity, and the compound capsaicin, resulting in sensations of pain in the skin, visceral organs, and oral cavity. Recently, TRPV1 activation was also demonstrated in response to basic pH elicited by ammonia and intracellular alkalization. Tris-hydroxymethyl aminomethane (THAM) is widely used as an alkalizing agent; however, the effects of THAM on TRPV1 channels have not been defined. In this study, we characterized the effects of THAM-induced TRPV1 channel activation in baby hamster kidney cells expressing human TRPV1 (hTRPV1) and the Ca(2+)-sensitive fluorescent sensor GCaMP2 by real-time confocal microscopy. Notably, both capsaicin (1 μM) and pH 6.5 buffer elicited steep increases in the intracellular Ca(2+) concentration ([Ca(2+)]i), while treatment with THAM (pH 8.5) alone had no effect. However, treatment with THAM (pH 8.5) following capsaicin application elicited a profound, long-lasting increase in [Ca(2+)]i that was completely inhibited by the TRPV1 antagonist capsazepine. Taken together, these results suggest that hTRPV1 pre-activation is required to provoke enhanced, THAM-induced [Ca(2+)]i increases, which could be a mechanism underlying pain induced by basic pH.

    Topics: Acrylamides; Animals; Calcium; Capsaicin; Cells, Cultured; Cricetinae; Hydrogen-Ion Concentration; Pain; TRPV Cation Channels

2016
Potentiation of acid-sensing ion channel activity by peripheral group I metabotropic glutamate receptor signaling.
    Pharmacological research, 2016, Volume: 107

    Glutamate activates peripheral group I metabotropic glutamate receptors (mGluRs) and contributes to inflammatory pain. However, it is still not clear the mechanisms are involved in group I mGluR-mediated peripheral sensitization. Herein, we report that group I mGluRs signaling sensitizes acid-sensing ion channels (ASICs) in dorsal root ganglion (DRG) neurons and contributes to acidosis-evoked pain. DHPG, a selective group I mGluR agonist, can potentiate the functional activity of ASICs, which mediated the proton-induced events. DHPG concentration-dependently increased proton-gated currents in DRG neurons. It shifted the proton concentration-response curve upwards, with a 47.3±7.0% increase of the maximal current response to proton. Group I mGluRs, especially mGluR5, mediated the potentiation of DHPG via an intracellular cascade. DHPG potentiation of proton-gated currents disappeared after inhibition of intracellular Gq/11 proteins, PLCβ, PKC or PICK1 signaling. Moreover, DHPG enhanced proton-evoked membrane excitability of rat DRG neurons and increased the amplitude of the depolarization and the number of spikes induced by acid stimuli. Finally, peripherally administration of DHPG dose-dependently exacerbated nociceptive responses to intraplantar injection of acetic acid in rats. Potentiation of ASIC activity by group I mGluR signaling in rat DRG neurons revealed a novel peripheral mechanism underlying group I mGluRs involvement in hyperalgesia.

    Topics: Acetic Acid; Acid Sensing Ion Channels; Acidosis; Animals; Capsaicin; Ganglia, Spinal; Male; Methoxyhydroxyphenylglycol; Neurons; Pain; Rats, Sprague-Dawley; Receptors, Metabotropic Glutamate; Sodium Channel Blockers; Tetrodotoxin; TRPV Cation Channels

2016
Systemic desensitization through TRPA1 channels by capsazepine and mustard oil - a novel strategy against inflammation and pain.
    Scientific reports, 2016, 06-30, Volume: 6

    We demonstrate a novel dual strategy against inflammation and pain through body-wide desensitization of nociceptors via TRPA1. Attenuation of experimental colitis by capsazepine (CPZ) has long been attributed to its antagonistic action on TRPV1 and associated inhibition of neurogenic inflammation. In contrast, we found that CPZ exerts its anti-inflammatory effects via profound desensitization of TRPA1. Micromolar CPZ induced calcium influx in isolated dorsal root ganglion (DRG) neurons from wild-type (WT) but not TRPA1-deficient mice. CPZ-induced calcium transients in human TRPA1-expressing HEK293t cells were blocked by the selective TRPA1 antagonists HC 030031 and A967079 and involved three cysteine residues in the N-terminal domain. Intriguingly, both colonic enemas and drinking water with CPZ led to profound systemic hypoalgesia in WT and TRPV1(-/-) but not TRPA1(-/-) mice. These findings may guide the development of a novel class of disease-modifying drugs with anti-inflammatory and anti-nociceptive effects.

    Topics: Acetanilides; Analgesics; Animals; Anti-Inflammatory Agents; Calcium Signaling; Capsaicin; HEK293 Cells; Humans; Inflammation; Mice; Mice, Knockout; Mustard Plant; Oximes; Pain; Plant Oils; Purines; TRPA1 Cation Channel

2016
Inhibitors of glutamate release from breast cancer cells; new targets for cancer-induced bone-pain.
    Scientific reports, 2015, Feb-11, Volume: 5

    Glutamate is an important signaling molecule in a wide variety of tissues. Aberrant glutamatergic signaling disrupts normal tissue homeostasis and induces several disruptive pathological conditions including pain. Breast cancer cells secrete high levels of glutamate and often metastasize to bone. Exogenous glutamate can disrupt normal bone turnover and may be responsible for cancer-induced bone pain (CIBP). CIBP is a significant co-morbidity that affects quality of life for many advanced-stage breast cancer patients. Current treatment options are commonly accompanied by serious side-effects that negatively impact patient care. Identifying small molecule inhibitors of glutamate release from aggressive breast cancer cells advances a novel, mechanistic approach to targeting CIBP that could advance treatment for several pathological conditions. Using high-throughput screening, we investigated the ability of approximately 30,000 compounds from the Canadian Compound Collection to reduce glutamate release from MDA-MB-231 breast cancer cells. This line is known to secrete high levels of glutamate and has been demonstrated to induce CIBP by this mechanism. Positive chemical hits were based on the potency of each molecule relative to a known pharmacological inhibitor of glutamate release, sulfasalazine. Efficacy was confirmed and drug-like molecules were identified as potent inhibitors of glutamate secretion from MDA-MB-231, MCF-7 and Mat-Ly-Lu cells.

    Topics: 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine; Bone and Bones; Breast Neoplasms; Capsaicin; Cell Line, Tumor; Dopamine Agonists; Drug Discovery; Female; Glutamic Acid; High-Throughput Screening Assays; Humans; Inhibitory Concentration 50; Pain; Signal Transduction; Small Molecule Libraries

2015
Role of TRPV1 channels of the dorsal periaqueductal gray in the modulation of nociception and open elevated plus maze-induced antinociception in mice.
    Behavioural brain research, 2015, Oct-01, Volume: 292

    Recent findings have identified the presence of transient receptor potential vanilloid-1 (TRPV1) channels within the dorsal portion of the periaqueductal gray (dPAG), suggesting their involvement in the control of pain and environmentally-induced antinociception. Environmentally, antinociception may be achieved through the use of an open elevated plus maze (oEPM, an EPM with 4 open arms), a highly aversive environmental situation. Here, we investigated the role of these TRPV1 channels within the dPAG in the modulation of a tonic pain and in the oEPM-induced antinociception. Male Swiss mice, under the nociceptive effect of 2.5% formalin injected into the right hind paw, received intra-dPAG injections of the TRPV1 agonist (capsaicin: 0, 0.01, 0.1 or 1.0 nmol/0.2 μL; Experiment 1) or antagonist (capsazepine: 0, 10 or 30 nmol/0.2 μL; Experiment 2) or combined injections of capsazepine (30 nmol) and capsaicin (1.0 nmol) (Experiment 3) and the time spent licking the formalin-injected paw was recorded. In Experiment 4, mice received intra-dPAG capsazepine (0 or 30 nmol) and were exposed to the oEPM or to a control situation, an enclosed EPM (eEPM; an EPM with 4 enclosed arms). Results showed that while capsaicin (1 nmol) decreased the time spent licking the formalin-injected paw, capsazepine did not change nociceptive response. Capsazepine (30 nmol) blocked pain inhibition induced by capsaicin and mildly attenuated the oEPM-induced antinociception. Our results revealed an important role of TRPV1 channels within the dPAG in the modulation of pain and in the phenomenon known as fear-induced antinociception in mice.

    Topics: Animals; Anxiety; Capsaicin; Fear; Male; Maze Learning; Mice; Nociception; Pain; Pain Measurement; Periaqueductal Gray; TRPV Cation Channels

2015
Morphine inhibits acid-sensing ion channel currents in rat dorsal root ganglion neurons.
    Brain research, 2014, Mar-20, Volume: 1554

    Extracellular acidosis is a common feature in pain-generating pathological conditions. Acid-sensing ion channels (ASICs), pH sensors, are distributed in peripheral sensory neurons and participate in nociception. Morphine exerts potent analgesic effects through the activation of opioid receptors for various pain conditions. A cross-talk between ASICs and opioid receptors in peripheral sensory neurons has not been shown so far. Here, we have found that morphine inhibits the activity of native ASICs in rat dorsal root ganglion (DRG) neurons. Morphine dose-dependently inhibited proton-gated currents mediated by ASICs in the presence of the TRPV1 inhibitor capsazepine. Morphine shifted the proton concentration-response curve downwards, with a decrease of 51.4±3.8% in the maximum current response but with no significant change in the pH0.5 value. Another μ-opioid receptor agonist DAMGO induced a similar decrease in ASIC currents compared with morphine. The morphine inhibition of ASIC currents was blocked by naloxone, a specific opioid receptor antagonist. Pretreatment of forskolin, an adenylyl cyclase activator, or the addition of cAMP reversed the inhibitory effect of morphine. Moreover, morphine altered acid-evoked excitability of rat DRG neurons and decreased the number of action potentials induced by acid stimuli. Finally, peripheral applied morphine relieved pain evoked by intraplantar of acetic acid in rats. Our results indicate that morphine can inhibit the activity of ASICs via μ-opioid receptor and cAMP dependent signal pathway. These observations demonstrate a cross-talk between ASICs and opioid receptors in peripheral sensory neurons, which was a novel analgesic mechanism of morphine.

    Topics: Acetic Acid; Acid Sensing Ion Channel Blockers; Acid Sensing Ion Channels; Action Potentials; Analgesics, Opioid; Animals; Capsaicin; Dose-Response Relationship, Drug; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Ganglia, Spinal; In Vitro Techniques; Male; Morphine; Naloxone; Narcotic Antagonists; Neurons; Nociception; Pain; Protons; Rats; Rats, Sprague-Dawley; Receptors, Opioid, mu; TRPV Cation Channels

2014
Capsaicin induces reflex scratching in inflamed skin.
    Pharmacology, 2011, Volume: 88, Issue:1-2

    We investigated whether capsaicin induces itching in skin with existing inflammation. We induced skin inflammation by intradermal injection of complete Freund's adjuvant (CFA) in the neck of mice. Four days later, we injected capsaicin in the same area and counted the number of scratching bouts for 30 min. We examined potential effects on pain in parallel experiments in which CFA and capsaicin were intradermally injected into hind paws. We used the time spent licking the hind paws during the 15 min after capsaicin injection as an estimate of pain. Capsaicin injection into the skin pretreated with CFA, but not into healthy skin, induced scratching. The scratching behavior was reduced by pretreatment with naloxone or capsazepine, selective antagonists for transient receptor potential vanilloid receptor-1 (TRPV1), but not morphine or mepyramine, selective antagonists for histamine 1 receptor. In animals injected with capsaicin into the hind paws, licking behavior was significantly inhibited via a μ-receptor-dependent mechanism. Our results show that TRPV1 activation, which normally induces pain, evokes an itch-related response in the presence of inflammation. This model may be interesting for future studies to explore the mechanism of a painful stimuli-induced itch observed under pathological conditions.

    Topics: Adjuvants, Immunologic; Animals; Anti-Inflammatory Agents, Non-Steroidal; Behavior, Animal; Capsaicin; Dimethyl Sulfoxide; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Evaluation, Preclinical; Freund's Adjuvant; Inflammation; Injections, Intradermal; Male; Mice; Mice, Inbred C57BL; Morphine; Naloxone; Pain; Pruritus; Receptors, Opioid, mu; Reflex; Sensory System Agents; Skin; Time Factors; TRPV Cation Channels

2011
Effects of capsazepine, a transient receptor potential vanilloid type 1 antagonist, on morphine-induced antinociception, tolerance, and dependence in mice.
    British journal of anaesthesia, 2010, Volume: 105, Issue:5

    Repeated morphine treatment has been shown to induce transient receptor potential vanilloid type 1 (TRPV1) expression in the spinal cord, dorsal root ganglion (DRG), and sciatic nerve of a rat model. Increased TRPV1 expression may therefore play a role in morphine tolerance. In this study, we evaluated the hypothesis that blockage of TRPV1 may be useful as an adjunctive pain management therapy. We investigated whether blockage of TRPV1 by capsazepine, a TRPV1 antagonist, affected antinociception, development of tolerance, and physical dependence on morphine in mice.. Institute of Cancer Research mice were pretreated with capsazepine and post-treated with morphine acutely and repeatedly. Antinociception and its tolerance were assessed using the hot-plate test. Morphine dependence was examined through the manifestation of withdrawal symptoms induced by naloxone in morphine-dependent mice.. Acute capsazepine treatment (5 mg kg⁻¹, i.p.) potentiated the antinociceptive effects of morphine, as measured by the hot-plate test. Repeated co-treatment of capsazepine (2.5 mg kg⁻¹ i.p.) with morphine attenuated the development of tolerance to the antinociceptive effect of morphine. The development of morphine dependence was also reduced by capsazepine (1.25 or 2.5 mg kg⁻¹ i.p.).. Our results suggest that TRPV1 antagonists can be used adjunctively to morphine treatment because they strengthen morphine antinociception and prevent the development of tolerance, and also physical dependence, on morphine.

    Topics: Analgesics, Opioid; Animals; Capsaicin; Dose-Response Relationship, Drug; Drug Evaluation, Preclinical; Drug Synergism; Drug Tolerance; Male; Mice; Morphine; Morphine Dependence; Naloxone; Narcotic Antagonists; Pain; Substance Withdrawal Syndrome; TRPV Cation Channels

2010
The proteinase/proteinase-activated receptor-2/transient receptor potential vanilloid-1 cascade impacts pancreatic pain in mice.
    Life sciences, 2010, Nov-20, Volume: 87, Issue:19-22

    Proteinase-activated receptor-2 (PAR2) and transient receptor potential vanilloid-1 (TRPV1) are co-localized in the primary afferents, and the trans-activation of TRPV1 by PAR2 activation is involved in processing of somatic pain. Given evidence for contribution of PAR2 to pancreatic pain, the present study aimed at clarifying the involvement of TRPV1 in processing of pancreatic pain by the proteinase/PAR2 pathway in mice.. Acute pancreatitis was created by repeated administration of cerulein in conscious mice, and the referred allodynia/hyperalgesia was assessed using von Frey filaments. Injection of PAR2 agonists into the pancreatic duct was achieved in anesthetized mice, and expression of Fos in the spinal cord was determined by immunohistochemistry.. The established referred allodynia/hyperalgesia following cerulein treatment was abolished by post-treatment with nafamostat mesilate, a proteinase inhibitor, and with capsazepine, a TRPV1 antagonist, in mice. Injection of trypsin, an endogenous PAR2 agonist, or SLIGRL-NH(2), a PAR2-activating peptide, into the pancreatic duct caused expression of Fos protein in the spinal superficial layers at T8-T10 levels in the mice. The spinal Fos expression caused by trypsin and by SLIGRL-NH(2) was partially blocked by capsazepine, the former effect abolished by nafamostat mesilate.. Our data thus suggest that the proteinase/PAR2/TRPV1 cascade might impact pancreatic pain, in addition to somatic pain, and play a role in the maintenance of pancreatitis-related pain in mice.

    Topics: Acute Disease; Animals; Benzamidines; Capsaicin; Ceruletide; Disease Models, Animal; Gene Expression Regulation; Guanidines; Hyperalgesia; Male; Mice; Oligopeptides; Pain; Pancreatitis; Proto-Oncogene Proteins c-fos; Receptor, PAR-2; Spinal Cord; TRPV Cation Channels

2010
Excitation of cutaneous C nociceptors by intraplantar administration of anandamide.
    Brain research, 2009, May-01, Volume: 1268

    Anandamide has been characterized as both an endocannabinoid and endovanilloid. Consistent with its actions as an endovanilloid, previous studies have demonstrated that anandamide can excite primary sensory neurons in vitro via transient receptor potential vanilloid type one (TRPV1) receptors. In the present study, we sought to determine if anandamide excited cutaneous C nociceptors in vivo and if this excitation correlated with nocifensive behaviors. Using teased-fiber electrophysiological methods in the rat, C nociceptors isolated from the tibial nerve with receptive fields (RFs) on the plantar surface of the hindpaw were studied. Injection of anandamide into the RF dose-dependently excited nociceptors at doses of 10 and 100 microg. The TRPV1 receptor antagonists, capsazepine or SB 366791, were applied to the RF to determine if excitation by anandamide was mediated through TRPV1 receptors. Intraplantar injection of either capsazepine (10 microg) or SB 366791 (3 microg) attenuated the excitation produced by 100 microg anandamide. We also determined whether excitation of C nociceptors by anandamide was associated with nocifensive behaviors. Intraplantar injection of 100 microg anandamide produced nocifensive behaviors that were attenuated by pre-treatment with either capsazepine or SB 366791. Furthermore, we determined if intraplantar injection of anandamide altered withdrawal responses to radiant heat. Neither intraplantar injection of anandamide nor vehicle produced antinociception or hyperalgesia to radiant heat. Our results indicate that anandamide excited cutaneous C nociceptors and produced nocifensive behaviors via activation of TRPV1 receptors.

    Topics: Action Potentials; Anilides; Animals; Arachidonic Acids; Calcium Channel Blockers; Capsaicin; Cinnamates; Dose-Response Relationship, Drug; Endocannabinoids; Hindlimb; Hot Temperature; Male; Nociceptors; Pain; Pain Measurement; Polyunsaturated Alkamides; Rats; Rats, Sprague-Dawley; Skin; Tibial Nerve; TRPV Cation Channels

2009
Evidence of TRPV1 receptor and PKC signaling pathway in the antinociceptive effect of amyrin octanoate.
    Brain research, 2009, Oct-27, Volume: 1295

    Previous studies from our group investigated the antinociceptive property of amyrin octanoate, a synthetic compound derivative from natural precursor alpha, beta-amyrin, against nociceptive response induced by acetic acid and formalin. Here, we investigated some of the mechanisms of action underlying the antinociceptive effects of amyrin octanoate. Amyrin octanoate given intraperitoneally (0.001-1 mg /kg) or intrathecally (10-1000 ng /site) caused dose-dependent and long-lasting inhibition of acetic acid-induced visceral nociception, with mean ID(50) values of 0.003 (0.001-0.005) mg/kg and 122.4 (60.8-246.6) ng/site, respectively. In the capsaicin- and glutamate-induced paw licking, amyrin octanoate caused significant and dose-dependent inhibition of both nociceptive responses, with ID(50) values of 1.36 and 0.04 mg/kg, respectively. Furthermore, amyrin octanoate also reduced significantly the nociception caused by intrathecal injection of glutamate, substance P and capsaicin, with inhibitions of 36+/-11%, 67+/-10% and 78+/-5%, respectively. The antinociception caused by amyrin octanoate in the acetic acid test was significantly attenuated by neonatal pretreatment of mice with capsaicin, but seems to involve mechanisms independent of G(i/o) protein, opioidergic, serotonergic, noradrenergic and cholinergic system, since it was not affected by pertussis toxin, naloxone, yohimbine, mecamylamine or atropine. In addition, amyrin octanoate reduced thermal and mechanical hyperalgesia induced by bradykinin and phorbol myristate acetate in rats, without affecting similar responses caused by prostaglandin E(2). Taken together, the present results shown that octanoate amyrin produces antinociceptive and antihyperalgesic effects, through an interaction with capsaicin-sensitive fibers and the inhibition of the PKC signaling pathway.

    Topics: Acetic Acid; Analgesics; Analysis of Variance; Animals; Capsaicin; Dose-Response Relationship, Drug; Female; Hot Temperature; Hyperalgesia; Male; Mice; Motor Activity; Neurons; Oleanolic Acid; Opioid Peptides; Pain; Pain Measurement; Physical Stimulation; Protein Kinase C; Psychomotor Performance; Rats; Rats, Wistar; Serotonin; Signal Transduction; TRPV Cation Channels

2009
Mediating roles of the vanilloid receptor TRPV1 in activation of rat primary afferent nociceptive neurons by formaldehyde.
    Sheng li xue bao : [Acta physiologica Sinica], 2009, Oct-25, Volume: 61, Issue:5

    The formalin test is a commonly used animal model of acute and tonic pain. However, the molecular targets of formaldehyde (FA, the main ingredient of the formalin solution) on primary nociceptor cells remain controversial. In this report, the effects of FA on electrophysiologically-identified primary nociceptor cells were evaluated in vitro and the roles of the vanilloid receptor TRPV1 in FA-produced activation of primary nociceptors were also examined at both cellular and behavioral levels. Of 92 acutely dissociated dorsal root ganglion (DRG) cells recorded by current patch-clamp technique, 34% were discharged by FA application with the mean onset latencies of the first action potential (AP) being (367.34+/-32.96) s. All the FA-sensitive cells were identified as nociceptor cells by their distinguishable features of AP including longer duration, existence of a hump (a shoulder or inflection) on the repolarizing phase, and longer after-hyperpolarization of APs. Co-application of capsazepine (CPZ), a competitive antagonist of TRPV1 receptors, could block FA-evoked firing with partial inhibition on the membrane depolarization of all cells tested. Of another 160 cells examined by confocal calcium imaging, 32% were shown to respond to FA with an intracellular Ca(2+) rise. Of 51 FA-sensitive cells, 67% were suppressed by CPZ, suggesting partial involvement of TRPV1 in mediation of the FA-evoked intracellular Ca(2+) rise. Under voltage-clamp mode, 41% of DRG cells were evoked to give rise to inward current with the remaining 59% being unchanged. In separate experiments on the other 56 FA-sensitive cells, concentration-dependent increase in the FA-evoked current amplitude was demonstrated. In comparison with controls, the FA-evoked inward current could be significantly suppressed by CPZ that was further enhanced by HC-030031, a TRPA1 selective antagonist. Finally, local effects of CPZ were confirmed in the formalin test and it was shown that the formalin-induced paw flinches were strongly suppressed by CPZ in phase 1 but with phase 2 being significantly suppressed only during 25-55 min. It is therefore concluded that FA can directly activate a subpopulation of primary nociceptor cells and the FA-induced AP discharges are likely to contribute mainly to phase 1, but not phase 2 of the formalin-induced nociception. The activation of primary nociceptor cells by FA is likely to be mediated, at least in part, through TRPV1 and/or TRPA1 receptors.

    Topics: Acetanilides; Action Potentials; Animals; Capsaicin; Formaldehyde; Ganglia, Spinal; Nociceptors; Pain; Pain Measurement; Patch-Clamp Techniques; Purines; Rats; Rats, Sprague-Dawley; TRPV Cation Channels

2009
Behavioral and electrophysiological evidence for the differential functions of TRPV1 at early and late stages of chronic inflammatory nociception in rats.
    Neurochemical research, 2008, Volume: 33, Issue:10

    We previously reported that vanilloid receptor type 1 (VR1, or TRPV1) was up-regulated in dorsal root ganglion (DRG) and the spinal dorsal horn after chronic inflammatory pain produced by complete Freund's adjuvant (CFA) injection into the plantar of rat hind paw. In the present study, we found that subcutaneous or intrathecal application of capsazepine (CPZ), a TRPV1 competitive antagonist, could inhibit thermal hyperalgesia on day 1 and on day 14 but not on day 28 after CFA injection. With extracellular electrophysiological recording, the effect of CPZ on noxious electrical or heat stimulation evoked responses of wide dynamic range (WDR) neurons in the deep layers of the spinal dorsal horn was evaluated. Under noxious electrical stimulation to sciatic nerve, CPZ applied to the spinal cord produced an inhibition on Adelta- and C-fiber evoked responses of WDR neurons on day 1 and 14, but not on day 28. Under radiant heat stimulation to the receptive field skin, subcutaneous application of CPZ significantly inhibited the background activity and extended the response latency of WDR neurons on day 14. These results provide new evidence for the functional significance of TRPV1 at the early stage, but not the late stage, in the rat model of CFA-induced inflammatory pain.

    Topics: Animals; Capsaicin; Chronic Disease; Electric Stimulation; Evoked Potentials; Freund's Adjuvant; Hot Temperature; Hyperalgesia; Inflammation; Injections, Spinal; Male; Pain; Physical Stimulation; Posterior Horn Cells; Rats; Rats, Sprague-Dawley; Sciatic Nerve; Spinal Cord; TRPV Cation Channels

2008
Pronociceptive response elicited by TRPA1 receptor activation in mice.
    Neuroscience, 2008, Mar-18, Volume: 152, Issue:2

    Ankyrin-repeat transient receptor potential 1 (TRPA1) is a member of the transient receptor potential (TRP) channel family and it is found in sensory neurons. In the present study, we found that TRPA1 receptor activation with allyl isothiocyanate or cinnamaldehyde caused dose-dependent spontaneous nociception when injected into the mouse hind paw. Very similar results were obtained when stimulating transient receptor potential vanilloid 1 (TRPV1) receptors with capsaicin. Pretreatment with the TRP receptor antagonist Ruthenium Red (1 nmol/paw) inhibited capsaicin-(0.1 nmol/paw) and allyl isothiocyanate-(1 nmol/paw) induced nociceptive responses. However, the nonselective TRPV1 receptor antagonist capsazepine (1 nmol/paw) and the selective TRPV1 receptor antagonist SB 366791 (1 nmol/paw) only attenuated capsaicin-induced nociception. In contrast, the intrathecal treatment with TRPA1 antisense oligodeoxynucleotide (2.5 nmol/site) and the degeneration of the subset of primary afferent fibers sensitive to capsaicin significantly reduced allyl isothiocyanate-induced nociception. Consequently to TRPA1 antisense oligodeoxynucleotide treatment there was a marked decrease of the expression of TRPA1 receptor in both sciatic nervous and spinal cord segments. Moreover, capsaicin and allyl isothiocyanate-induced nociception were not significantly changed by chemical sympathectomy produced by guanethidine. The previous degranulation of mast cells by compound 48/80 and treatment with antagonist H(1) receptor antagonist pyrilamine (400 microg/paw) both significantly inhibited the capsaicin- and allyl isothiocyanate-induced nociception. The selective NK(1) receptor antagonist N(2)-[(4R)-4-hydroxy-1-(1-methyl-1H-indol-3-yl) carbony-1-L-prolyl]-N-methyl-N-phenylmethyl-3-2-(2-naphtyl)-L-alaninamide (10 nmol/paw) reduced either capsaicin- or allyl isothiocyanate-induced nociception. Collectively, the present findings demonstrate that the TRPA1 agonist allyl isothiocyanate produces a consistent nociceptive response when injected into the mouse paw, an effect that seems to be mediated via activation of TRPA1 receptor and dependent on the capsaicin-sensitive fibers, release of histamine by mast cells and participation of tachykinins. Thus, the TRPA1 receptor has an apparently relevant role in nociceptive processes and the selective TRPA1 antagonist might possess a potential antinociceptive property.

    Topics: Analgesics; Anilides; Animals; Behavior, Animal; Capsaicin; Cinnamates; Dipeptides; Dose-Response Relationship, Drug; Drug Interactions; Indoles; Isothiocyanates; Male; Mice; Pain; Pain Measurement; Ruthenium Red; Time Factors; Transient Receptor Potential Channels; TRPA1 Cation Channel

2008
Involvement of TRPV1 in nociceptive behavior in a rat model of cancer pain.
    The journal of pain, 2008, Volume: 9, Issue:8

    To investigate the mechanisms underlying cancer pain, we developed a rat model of cancer pain by inoculating SCC-158 into the rat hind paw, resulting in squamous cell carcinoma, and determined the time course of thermal, mechanical sensitivity, and spontaneous nocifensive behavior in this model. In addition, pharmacological and immunohistochemical studies were performed to examine the role played by transient receptor potential vanilloid (TRPV)1 and TRPV2 expressed in the dorsal root ganglia. Inoculation of SCC-158 induced marked mechanical allodynia, thermal hyperalgesia, and signs of spontaneous nocifensive behavior, which were diminished by systemic morphine administration. Intraplantar administration of the TRPV1 antagonist capsazepine or TRP channels antagonist ruthenium red did not inhibit spontaneous nocifensive behavior at all. However, intraplantar administration of capsazepine or ruthenium red completely inhibited mechanical allodynia and thermal hyperalgesia produced by SCC-158 inoculation. Immunohistochemically, the number of TRPV1-positive, large-sized neurons increased, whereas there was no change in small-sized neurons in the dorsal root ganglia. Our results suggest that TRPV1 play an important role in the mechanical allodynia and thermal hyperalgesia caused by SCC-158 inoculation.. We describe a cancer pain model that induced marked mechanical allodynia, thermal hyperalgesia, signs of spontaneous nocifensive behavior, and upregulation of TRPV1. Mechanical allodynia and thermal hyperalgesia were inhibited by TRP channel antagonists. The results suggest that TRPV1 plays an important role in the model of cancer pain.

    Topics: Analgesics, Opioid; Animals; Behavior, Animal; Capsaicin; Carcinoma, Squamous Cell; Cell Line, Tumor; Foot Diseases; Ganglia, Spinal; Hyperalgesia; Immunohistochemistry; Injections, Intraperitoneal; Injections, Subcutaneous; Male; Morphine; Neoplasms, Experimental; Nociceptors; Pain; Pain Measurement; Pain Threshold; Rats; Rats, Inbred F344; Ruthenium Red; TRPV Cation Channels

2008
4-Hydroxynonenal, an endogenous aldehyde, causes pain and neurogenic inflammation through activation of the irritant receptor TRPA1.
    Proceedings of the National Academy of Sciences of the United States of America, 2007, Aug-14, Volume: 104, Issue:33

    TRPA1 is an excitatory ion channel expressed by a subpopulation of primary afferent somatosensory neurons that contain substance P and calcitonin gene-related peptide. Environmental irritants such as mustard oil, allicin, and acrolein activate TRPA1, causing acute pain, neuropeptide release, and neurogenic inflammation. Genetic studies indicate that TRPA1 is also activated downstream of one or more proalgesic agents that stimulate phospholipase C signaling pathways, thereby implicating this channel in peripheral mechanisms controlling pain hypersensitivity. However, it is not known whether tissue injury also produces endogenous proalgesic factors that activate TRPA1 directly to augment inflammatory pain. Here, we report that recombinant or native TRPA1 channels are activated by 4-hydroxy-2-nonenal (HNE), an endogenous alpha,beta-unsaturated aldehyde that is produced when reactive oxygen species peroxidate membrane phospholipids in response to tissue injury, inflammation, and oxidative stress. HNE provokes release of substance P and calcitonin gene-related peptide from central (spinal cord) and peripheral (esophagus) nerve endings, resulting in neurogenic plasma protein extravasation in peripheral tissues. Moreover, injection of HNE into the rodent hind paw elicits pain-related behaviors that are inhibited by TRPA1 antagonists and absent in animals lacking functional TRPA1 channels. These findings demonstrate that HNE activates TRPA1 on nociceptive neurons to promote acute pain, neuropeptide release, and neurogenic inflammation. Our results also provide a mechanism-based rationale for developing novel analgesic or anti-inflammatory agents that target HNE production or TRPA1 activation.

    Topics: Acrolein; Aldehydes; Ankyrins; Calcium Channels; Cell Line; Cloning, Molecular; Humans; Inflammation; Pain; Patch-Clamp Techniques; TRPA1 Cation Channel; TRPC Cation Channels

2007
TRPV1 is a novel target for omega-3 polyunsaturated fatty acids.
    The Journal of physiology, 2007, Jan-15, Volume: 578, Issue:Pt 2

    Omega-3 (n-3) fatty acids are essential for proper neuronal function, and they possess prominent analgesic properties, yet their underlying signalling mechanisms are unclear. Here we show that n-3 fatty acids interact directly with TRPV1, an ion channel expressed in nociceptive neurones and brain. These fatty acids activate TRPV1 in a phosphorylation-dependent manner, enhance responses to extracellular protons, and displace binding of the ultrapotent TRPV1 ligand [3H]resiniferatoxin. In contrast to their agonistic properties, n-3 fatty acids competitively inhibit the responses of vanilloid agonists. These actions occur in mammalian cells in the physiological concentration range of 1-10 mum. Significantly, docosahexaenoic acid exhibits the greatest efficacy as an agonist, whereas eicosapentaenoic acid and linolenic acid are markedly more effective inhibitors. Similarly, eicosapentaenoic acid but not docosahexaenoic acid profoundly reduces capsaicin-evoked pain-related behaviour in mice. These effects are independent of alterations in membrane elasticity because the micelle-forming detergent Triton X-100 only minimally affects TRPV1 properties. Thus, n-3 fatty acids differentially regulate TRPV1 and this form of signalling may contribute to their biological effects. Further, these results suggest that dietary supplementation with selective n-3 fatty acids would be most beneficial for the treatment of pain.

    Topics: Animals; Binding, Competitive; Calcium; Capsaicin; Cell Line; Cell Membrane; Diterpenes; Fatty Acids, Omega-3; Fatty Acids, Omega-6; Female; Humans; Hydrogen-Ion Concentration; Linoleic Acid; Male; Membrane Fluidity; Membrane Potentials; Mice; Mice, Inbred C57BL; Oocytes; Pain; Rats; RNA, Complementary; TRPV Cation Channels; Xenopus laevis

2007
The non-psychoactive cannabis constituent cannabidiol is an orally effective therapeutic agent in rat chronic inflammatory and neuropathic pain.
    European journal of pharmacology, 2007, Feb-05, Volume: 556, Issue:1-3

    Cannabidiol, the major psycho-inactive component of cannabis, has substantial anti-inflammatory and immunomodulatory effects. This study investigated its therapeutic potential on neuropathic (sciatic nerve chronic constriction) and inflammatory pain (complete Freund's adjuvant intraplantar injection) in rats. In both models, daily oral treatment with cannabidiol (2.5-20 mg/kg to neuropathic and 20 mg/kg to adjuvant-injected rats) from day 7 to day 14 after the injury, or intraplantar injection, reduced hyperalgesia to thermal and mechanical stimuli. In the neuropathic animals, the anti-hyperalgesic effect of cannabidiol (20 mg/kg) was prevented by the vanilloid antagonist capsazepine (10 mg/kg, i.p.), but not by cannabinoid receptor antagonists. Cannabidiol's activity was associated with a reduction in the content of several mediators, such as prostaglandin E(2) (PGE(2)), lipid peroxide and nitric oxide (NO), and in the over-activity of glutathione-related enzymes. Cannabidiol only reduced the over-expression of constitutive endothelial NO synthase (NOS), without significantly affecting the inducible form (iNOS) in inflamed paw tissues. Cannabidiol had no effect on neuronal and iNOS isoforms in injured sciatic nerve. The compound's efficacy on neuropathic pain was not accompanied by any reduction in nuclear factor-kappaB (NF-kappaB) activation and tumor necrosis factor alpha (TNFalpha) content. The results indicate a potential for therapeutic use of cannabidiol in chronic painful states.

    Topics: Administration, Oral; Animals; Cannabidiol; Cannabinoid Receptor Antagonists; Cannabis; Capsaicin; Chronic Disease; Dinoprostone; Freund's Adjuvant; Hyperalgesia; Inflammation; Lipid Peroxides; Male; NF-kappa B; Nitric Oxide; Nitric Oxide Synthase; Pain; Pain Measurement; Rats; Rats, Wistar; Sciatic Neuropathy; Tumor Necrosis Factor-alpha

2007
Mouse colon sensory neurons detect extracellular acidosis via TRPV1.
    American journal of physiology. Cell physiology, 2007, Volume: 292, Issue:5

    Extracellular acidification contributes to pain by activating or modulating nociceptor activity. To evaluate acidic signaling from the colon, we characterized acid-elicited currents in thoracolumbar (TL) and lumbosacral (LS) dorsal root ganglion (DRG) neurons identified by content of a fluorescent dye (DiI) previously injected into the colon wall. In 13% of unidentified LS DRG neurons (not labeled with DiI) and 69% of LS colon neurons labeled with DiI, protons activated a sustained current that was significantly and reversibly attenuated by the transient receptor potential vanilloid receptor 1 (TRPV1) antagonist capsazepine. In contrast, 63% of unidentified LS DRG neurons and 4% of LS colon neurons exhibited transient amiloride-sensitive acid-sensing ion channel (ASIC) currents. The peak current density of acid-elicited currents was significantly reduced in colon sensory neurons from TRPV1-null mice, supporting predominant expression of TRPV1 in LS colon sensory neurons, which was also confirmed immunohistochemically. Similar to LS colon DRG neurons, acid-elicited currents in TL colon DRG neurons were mediated predominantly by TRPV1. However, the pH producing half-activation of responses significantly differed between TL and LS colon DRG neurons. The properties of acid-elicited currents in colon DRG neurons suggest differential contributions of ASICs and TRPV1 to colon sensation and likely nociception.

    Topics: Acidosis; Amiloride; Animals; Capsaicin; Cell Size; Cells, Cultured; Colon; Evoked Potentials; Extracellular Fluid; Ganglia, Spinal; Hydrogen-Ion Concentration; Kinetics; Lumbosacral Plexus; Male; Mechanotransduction, Cellular; Mice; Mice, Inbred C57BL; Mice, Knockout; Neurons, Afferent; Pain; Patch-Clamp Techniques; Sodium Channel Blockers; Thoracic Nerves; TRPV Cation Channels

2007
AM404 decreases Fos-immunoreactivity in the spinal cord in a model of inflammatory pain.
    Brain research, 2007, Jun-04, Volume: 1152

    Cannabinoids, such as anandamide, are involved in pain transmission. We evaluated the effects of AM404 (N-(4-hydroxyphenyl)-5Z,8Z,11Z,14Z-eicosatetraenamide), an anandamide reuptake inhibitor, monitoring the expression of c-fos, a marker of activated neurons and the pain-related behaviours using formalin test. The study was carried out in an experimental model of inflammatory pain made by a single injection of formalin in rat hind paws. Formalin test showed that the antinociceptive effect of AM404 was evident in phase I. We found that Fos-positive neurons in dorsal superficial and deep laminae of the lumbar spinal cord increased in formalin-injected animals and that AM404 significantly reduced Fos induction. Co-administration of cannabinoid CB(1) receptor antagonist (AM251), cannabinoid CB(2) receptor antagonist (AM630) and transient receptor potential vanilloid type 1 (TRPV-1) antagonist (capsazepine), attenuate the inhibitory effect of AM404 and this effect was higher using cannabinoid CB(2) and vanilloid TRPV-1 receptor antagonists. These results suggest that AM404 could be a useful drug to reduce inflammatory pain in our experimental model and that cannabinoid CB(2) receptor and vanilloid TRPV-1 receptor, and to a lesser extent, the cannabinoid CB(1) receptor are involved.

    Topics: Animals; Arachidonic Acids; Capsaicin; Endocannabinoids; Immunohistochemistry; Indoles; Inflammation; Male; Pain; Pain Measurement; Piperidines; Polyunsaturated Alkamides; Proto-Oncogene Proteins c-fos; Pyrazoles; Rats; Rats, Wistar; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Spinal Cord; TRPV Cation Channels

2007
Identification and biological characterization of 6-aryl-7-isopropylquinazolinones as novel TRPV1 antagonists that are effective in models of chronic pain.
    Journal of medicinal chemistry, 2006, Jan-26, Volume: 49, Issue:2

    Vanilloid receptor 1 (VR1, TRPV1) is a cation-selective ion channel that is expressed on primary afferent neurons and is upregulated following inflammation and nerve damage. Blockers of this channel may have utility in the treatment of chronic nociceptive and neuropathic pain. Here, we describe the optimization from a high throughput screening hit, of a series of 6-aryl-7-isopropylquinazolinones that are TRPV1 antagonists in vitro. We also demonstrate that one compound is active in vivo against capsaicin-induced hyperalgesia and in models of neuropathic and nociceptive pain in the rat.

    Topics: Animals; Blood-Brain Barrier; Caco-2 Cells; Cell Membrane Permeability; CHO Cells; Chronic Disease; Cricetinae; Cricetulus; Disease Models, Animal; Humans; In Vitro Techniques; Mice; Micronucleus Tests; Microsomes, Liver; Pain; Quinazolines; Rats; Solubility; Structure-Activity Relationship; TRPV Cation Channels

2006
Analgesic effects of capsazepine and resiniferatoxin on bone cancer pain in mice.
    Neuroscience letters, 2006, Jan-23, Volume: 393, Issue:1

    In the present paper, we describe the analgesic effects induced by the transient receptor potential vanilloid type 1 (TRPV1) antagonist, capsazepine, and the TRPV1 agonist, resiniferatoxin, on the thermal hyperalgesia induced by the presence of a tibial osteosarcoma or an inflammatory process in mice. The administration of capsazepine abolished the osteosarcoma-induced hyperalgesia at a dose range (3-10 mg/kg; s.c.) ineffective to inhibit the hyperalgesia elicited by the intraplantar administration of complete Freund's adjuvant (CFA). In contrast, the administration of resiniferatoxin (0.01-0.1 mg/kg; s.c.) inhibited both the osteosarcoma- and the CFA-induced hyperalgesia. Remarkably, a single dose of resiniferatoxin abolished the osteosarcoma-induced hyperalgesia for several days and completely prevented the instauration of thermal hyperalgesia when administered at the initial stages of osteosarcoma development. The potential of drugs acting through TRPV1 for the management of some types of bone cancer pain is proposed.

    Topics: Analgesics; Analysis of Variance; Animals; Bone Neoplasms; Capsaicin; Cell Line; Disease Models, Animal; Diterpenes; Dose-Response Relationship, Drug; Freund's Adjuvant; Functional Laterality; Inflammation; Mice; Mice, Inbred C3H; Osteosarcoma; Pain; Pain Measurement; Reaction Time; Time Factors

2006
Tactile allodynia initiated by local subcutaneous endothelin-1 is prolonged by activation of TRPV-1 receptors.
    Experimental biology and medicine (Maywood, N.J.), 2006, Volume: 231, Issue:6

    Subcutaneous endothelin-1 (ET-1; 200 microM, 2 nmoles/paw) injected into the rat hind paw, has been shown to cause robust hind paw flinching (HPF) and paw licking, and to induce impulses selectively in primary nociceptors. Here we report that a much lower [ET-1] sensitizes the paw to a nocifensive withdrawal response to tactile stimulation (by von Frey hairs, VFH), a sensitization that involves local TRPV1 receptors. Injection of 10 microM ET-1 (0.1 nmole/paw) causes only marginal HPF but rapidly (20 mins after injection) lowers the force threshold for paw withdrawal (PWT) to VFH, to approximately 30% of pre-injection baseline. Such tactile allodynia persists for 3 hrs. In rats pre-injected with the TRPV1-antagonists capsazepine (CPZ; 1.33 mM) or 5'-iodoresiniferatoxin (I-RTX; 0.13 microM), 15 min before ET-1, a fast initial drop in PWT, as with ET-1 alone, occurs (to 40% or to 19% of baseline, respectively), but this earliest reduction then regresses back to the pre-injection PWT value more rapidly than with ET-1 alone. The recovery of allodynia from the maximum value is about two times faster for ET-1+CPZ and about 4 times faster for ET-1+ I-RTX, compared with that from ET-1 +vehicle (t(1/2) = 130, 60, and 250 mins, respectively). In contrast, spontaneous pain indicated by overt HPF from ET-1 is not attenuated by TRPV1 antagonists. Tactile allodynia is similarly abbreviated by antagonists of both ET(A) (BQ-123, 32 nmoles/paw) and ET(B) (BQ-788, 30 nmoles/paw) receptors, whereas HPF is abolished by this ET(A) antagonist but enhanced by the ET(B) antagonist. We conclude that low ET-1 causes tactile allodynia, which is characterized by a different time-course and pharmacology than ET-1-induced nociception, and that local TRPV1 receptors are involved in the maintenance of this ET-1-induced allodynia but not in the overt algesic action of ET-1.

    Topics: Animals; Behavior, Animal; Capsaicin; Diterpenes; Dose-Response Relationship, Drug; Endothelin-1; Injections, Subcutaneous; Male; Nociceptors; Pain; Rats; Rats, Sprague-Dawley; Reaction Time; Receptor, Endothelin A; Touch; TRPV Cation Channels

2006
Effects of the novel TRPV1 receptor antagonist SB366791 in vitro and in vivo in the rat.
    Neuroscience letters, 2005, Sep-09, Volume: 385, Issue:2

    The TRPV1 capsaicin receptor is a non-selective cation channel localized in the cell membrane of a subset of primary sensory neurons and functions as an integrator molecule in nociceptive/inflammatory processes. The present paper characterizes the effects of SB366791, a novel TRPV1 antagonist, on capsaicin-evoked responses both in vitro and in vivo using rat models. SB366791 (100 and 500 nM) significantly inhibited capsaicin-evoked release of the pro-inflammatory sensory neuropeptide substance P from isolated tracheae, while it did not influence electrically induced neuropeptide release. It also decreased capsaicin-induced Ca2+ influx in cultured trigeminal ganglion cells in a concentration-dependent manner (0.5-10 microM) with an IC50 of 651.9 nM. In vivo 500 microg/kg i.p. dose of SB366791 significantly inhibited capsaicin-induced hypothermia, wiping movements and vasodilatation in the knee joint, while 2 mg/kg capsazepine was ineffective, its effect lasted for 1h. However, neither antagonist was able to inhibit capsaicin-evoked hypothermia in Balb/c mice. Based on these data SB366791 is a more selective and in vivo also a more potent TRPV1 receptor antagonist than capsazepine in the rat therefore, it may promote the assessment of the therapeutic utility of TRPV1 channel blockers.

    Topics: Analgesics; Anilides; Animals; Capsaicin; Cells, Cultured; Cinnamates; Dose-Response Relationship, Drug; Drug Interactions; Hypothermia; Ion Channels; Male; Mice; Mice, Inbred BALB C; Neurons, Afferent; Nociceptors; Pain; Peripheral Nervous System; Rats; Rats, Wistar; Sensory Receptor Cells; Substance P; Trigeminal Ganglion; TRPV Cation Channels

2005
Characteristics of propofol-evoked vascular pain in anaesthetized rats.
    British journal of anaesthesia, 2005, Volume: 95, Issue:3

    In this study we have assessed vascular pain caused by the i.v. anaesthetic agent, propofol, using the flexor reflex response and compared this with that of capsaicin in anaesthetized intact rats.. Experiments were performed on 133 male Sprague-Dawley rats weighing 280-340 g. The animals were anaesthetized with urethane (1.3 g kg(-1), i.p.), and an arterial cannula was inserted to the level of the bifurcation of the femoral artery. The magnitude of the flexor reflex was examined by recording the electromyogram from the posterior biceps femoris/semitendinosus muscles.. Our data show that the flexor reflexes evoked by intra-arterial (i.a.) injection of propofol (1%, 25-100 microl) and capsaicin (0.05-0.2 microg) were dose dependent. An initial i.a. injection of procaine (2%, 200 microl) blocked both responses. Furthermore, the flexor reflex induced by these chemical stimuli were inhibited by morphine (5 mg kg(-1), s.c.) and restored with naloxone (1.5 mg kg(-1), s.c.). Pre-treatment with capsazepine (20 microg, i.a.), a selective VR1 antagonist, inhibited the capsaicin-evoked response, but not that of propofol. Indomethacin (10 mg kg(-1), i.p.), a non-selective cyclo-oxygenase inhibitor, inhibited only the propofol-evoked response and this recovered with arterial PGE2 (5 microg).. Collectively our data suggest that propofol-evoked vascular pain is mainly initiated by prostanoids.

    Topics: Analgesics, Opioid; Anesthetics, Intravenous; Anesthetics, Local; Animals; Capsaicin; Cyclooxygenase Inhibitors; Dinoprostone; Dose-Response Relationship, Drug; Electromyography; Indomethacin; Injections, Intra-Arterial; Male; Muscle, Skeletal; Pain; Procaine; Propofol; Rats; Rats, Sprague-Dawley; Reflex

2005
Heat and mechanical hyperalgesia in mice model of cancer pain.
    Pain, 2005, Volume: 117, Issue:1-2

    We developed a mouse model of cancer pain to investigate its underlying mechanisms. SCC-7, squamous cell carcinoma (SCC) derived from C3H mice, was inoculated subcutaneously into either the plantar region or thigh in male C3H/Hej mice. Heat and mechanical sensitivity as well as spontaneous behavior were measured at the plantar surface of the ipsilateral hind paw after the inoculation. Inoculated sites were histologically examined, and the expression of capsaicin receptors (TRPV1) was examined in the dorsal root ganglia (DRG) to clarify their potential contribution to pain sensitivity. Inoculation of cancer cells induced marked heat hyperalgesia and mechanical allodynia in the ipsilateral hind paw for two weeks in both plantar- and thigh-inoculation models. Signs of spontaneous pain, such as lifting, licking and flinching of the paw were also observed. However, further growth of the tumor reversed the mechanical allodynia in both plantar- and thigh-inoculation models, and heat hyperalgesia in thigh-inoculation models. Histologically, no infiltration of the tumor cells into the nerve was observed. TRPV1 immunoreactive cells increased in the L5 DRG on day 7, but returned to the control level on day 15 post-inoculation. Intraperitoneal administration of the competitive TRPV1 antagonist capsazepine inhibited hyperalgesia induced by tumor cell-inoculation in either plantar- or thigh-inoculated animals. This study indicated that inoculation of SCC resulted in spontaneous pain, heat hyperalgesia and mechanical allodynia. The altered expression of TRPV1 in the DRG may be involved in behavioral changes in this model.

    Topics: Animals; Body Temperature; Capsaicin; Cell Count; Cell Line, Tumor; Cell Size; Disease Models, Animal; Dose-Response Relationship, Drug; Ganglia, Spinal; Humans; Hyperalgesia; Immunohistochemistry; Male; Mice; Mice, Inbred C3H; Neoplasm Transplantation; Neoplasms; Pain; Pain Measurement; Pain Threshold; Reaction Time; Staining and Labeling; Time Factors; TRPV Cation Channels

2005
Mechanisms involved in the nociception produced by peripheral protein kinase c activation in mice.
    Pain, 2005, Volume: 117, Issue:1-2

    Protein kinase C (PKC) is able to phosphorylate several cellular components that serve as key regulatory components in signal transduction pathways of nociceptor excitation and sensitisation. Therefore, the present study attempted to assess some of the mechanisms involved in the overt nociception elicited by peripheral administration of the PKC activator, phorbol 12-myristate 13-acetate (PMA), in mice. The intraplantar (i.pl.) injection of PMA (16-1600 pmol/paw), but not its inactive analogue alpha-PMA, produced a long-lasting overt nociception (up to 45 min), as well as the activation of PKCalpha and PKCepsilon isoforms in treated paws. Indeed, the local administration of the PKC inhibitor GF109203X completely blocked PMA-induced nociception. The blockade of NK1, CGRP, NMDA, beta1-adrenergic, B2 or TRPV1 receptors with selective antagonists partially decreased PMA-induced nociception. Similarly, COX-1, COX-2, MEK or p38 MAP kinase inhibitors reduced the nociceptive effect produced by PMA. Notably, the nociceptive effect promoted by PMA was diminished in animals treated with an antagonist of IL-1beta receptor or with antibodies against TNFalpha, NGF or BDNF, but not against GDNF. Finally, mast cells as well as capsaicin-sensitive and sympathetic fibres, but not neutrophil influx, mediated the nociceptive effect produced by PMA. Collectively, the results of the present study have shown that PMA injection into the mouse paw results in PKC activation as well as a relatively delayed, but long-lasting, overt nociceptive behaviour in mice. Moreover, these results demonstrate that PKC activation exerts a critical role in modulating the excitability of sensory neurons.

    Topics: Adrenergic beta-Antagonists; Analgesics; Animals; Antibodies; Behavior, Animal; Blotting, Western; Bradykinin; Calcitonin Gene-Related Peptide; Capsaicin; Chelating Agents; Dipeptides; Dizocilpine Maleate; Dose-Response Relationship, Drug; Drug Interactions; Egtazic Acid; Enzyme Activation; Enzyme Inhibitors; Excitatory Amino Acid Antagonists; Extracellular Signal-Regulated MAP Kinases; Guanethidine; Indoles; Male; Mice; Nociceptors; Pain; Pain Measurement; Peptide Fragments; Propranolol; Protein Kinase C; Ruthenium Red; Salicylates; Sympatholytics; Tetradecanoylphorbol Acetate; Time Factors

2005
TRPV1 desensitisation and endogenous vanilloid involvement in the enhanced analgesia induced by capsaicin in inflamed tissues.
    Brain research bulletin, 2005, Nov-30, Volume: 67, Issue:6

    The intra-plantar acute administration of 10 microg of capsaicin to mice which had received complete Freund's adjuvant (CFA) 1 week before inhibits the thermal inflammatory hyperalgesia it induces and even produces a long-lasting analgesia for at least 2 weeks. In this study, we show that the administration of capsaicin (10 microg) also reduces the immediate licking behavior evoked by the intra-plantar administration of a lower dose of capsaicin (0.1 microg), the duration of this inhibitory effect being greater in CFA-inflamed mice (at least 2 weeks) than in non-inflamed animals (less than 4 days). Since this reduction of capsaicin-induced licking behavior may be interpreted as a consequence of the transient receptor potential vanilloid 1 receptor (TRPV1) unresponsiveness, we conclude that the administration of 10 microg of capsaicin into inflamed tissues can render the TRPV1 desensitised. We next explored whether endogenous vanilloids released during inflammation contribute to maintain the analgesia triggered by exogenous capsaicin. The acute administration of capsazepine (10 microg; intra-plantarly (i.pl.)) abolished the analgesic effect induced by the injection of capsaicin 1 week before in inflamed mice. From these results, it may be proposed that the maintenance by endovanilloids of the TRPV1 desensitisation induced by capsaicin could contribute to prolonging the analgesic effect induced by this agonist in inflamed tissues.

    Topics: Adjuvants, Immunologic; Analgesics; Animals; Capsaicin; Freund's Adjuvant; Hyperalgesia; Inflammation; Male; Mice; Pain; Pain Measurement; TRPV Cation Channels

2005
Effects of TRPV1 receptor antagonists on stimulated iCGRP release from isolated skin of rats and TRPV1 mutant mice.
    Pain, 2004, Volume: 109, Issue:3

    Capsaicin antagonists including ruthenium red, capsazepine and iodo-resiniferatoxin (I-RTX) have recently been shown to inhibit the activation by noxious heat of the capsaicin receptor (TRPV1) expressed in non-neuronal host cells, and natively, in cultured dorsal root ganglion cells. Noxious heat has been shown to release immunoreactive calcitonin gene-related peptide (iCGRP) from the isolated rat skin. In this model, ruthenium red, I-RTX as well as capsazepine 10 microM caused no alteration in iCGRP release at 32 degrees C by themselves whereas capsazepine 100 microM doubled it reversibly. In wild-type mice 100 microM capsazepine also stimulated iCGRP release while it was without effect in TRPV1 knockout littermates. In the rat skin, both ruthenium red and capsazepine (10/100 microM) reduced and abolished, respectively, capsaicin-induced iCGRP release while I-RTX (1/10 microM) was ineffective. Only ruthenium red 100 microM showed an unspecific effect inhibiting iCGRP release induced by KCl. Ruthenium red and capsazepine (10/100 microM) caused no significant alteration of iCGRP release induced by heat stimulation at 47 degrees C. Employing 45 degrees C stimulation intensity, capsazepine and I-RTX (in the higher concentrations) showed a significant facilitatory effect on the heat response suggesting a partial agonistic action of the compounds. It is concluded that noxious heat-induced iCGRP release in the isolated rat skin occurs through a mechanism that is not inhibited by TRPV1 antagonism reflecting a different pharmacological profile of noxious heat transduction in terminals of sensory neurons compared to that in cultured cell bodies and TRPV1-transfected host cells.

    Topics: Animals; Calcitonin Gene-Related Peptide; Capsaicin; Diterpenes; Dose-Response Relationship, Drug; Drug Interactions; Hot Temperature; In Vitro Techniques; Male; Mice; Mice, Knockout; Nociceptors; Pain; Rats; Rats, Wistar; Receptors, Drug; Ruthenium Red; Sensory Receptor Cells; Signal Transduction; Skin

2004
Anandamide-evoked activation of vanilloid receptor 1 contributes to the development of bladder hyperreflexia and nociceptive transmission to spinal dorsal horn neurons in cystitis.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 2004, Dec-15, Volume: 24, Issue:50

    The role of anandamide in the development of inflammatory hyperalgesia and visceral hyperreflexia was studied in the rat urinary bladder. Animals were given intraperitoneal cyclophosphamide injection, which evokes painful hemorrhagic cystitis accompanied by increased bladder reflex activity. The vanilloid receptor 1 [transient receptor potential vanilloid 1 (TRPV1)] antagonist capsazepine, applied onto the serosal surface of bladders, significantly reduced the hyperreflexia. Mass spectrometric analysis revealed that cyclophosphamide injection significantly and persistently increased the anandamide content of bladder tissues. The increase in the anandamide content paralleled the development of reflex hyperactivity. Anandamide (1-100 microm), applied onto the serosal surface of naive bladders, increased the reflex activity in a concentration-dependent manner. Repeated anandamide applications did not produce desensitization of the response. The anandamide-evoked effect was blocked by capsazepine or by instillation of resiniferatoxin, the ultrapotent TRPV1 agonist, into the bladders 24 hr before the anandamide challenge. The cannabinoid 1 receptor antagonist SR141716A [N-piperidino-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methylpyrazole-3-carboxamide] significantly increased the potency of anandamide in enhancing bladder reflex activity in naive but not in cyclophosphamide-injected animals. Application of the fatty acid amide hydrolyze inhibitor palmitoylisopropylamine onto the serosal surface of bladders also increased the reflex activity both in naive and cyclophosphamide-injected rats. This latter effect in naive animals was blocked by capsazepine and by resiniferatoxin pretreatment. Finally, intravesical instillation of anandamide (50 microm) increased c-fos expression in the spinal cord, which was reduced by capsazepine or by resiniferatoxin pretreatment. These results suggest that anandamide, through activating TRPV1, contributes to the development of hyperreflexia and hyperalgesia during cystitis.

    Topics: Acrolein; Animals; Arachidonic Acids; Capsaicin; Cyclophosphamide; Cystitis; Endocannabinoids; Female; Hydrolysis; Ion Channels; Pain; Polyunsaturated Alkamides; Posterior Horn Cells; Proto-Oncogene Proteins c-fos; Rats; Rats, Wistar; Receptor, Cannabinoid, CB1; Reflex, Abnormal; TRPV Cation Channels; Urinary Bladder

2004
Novel non-vanilloid VR1 antagonist of high analgesic effects and its structural requirement for VR1 antagonistic effects.
    Bioorganic & medicinal chemistry letters, 2003, Dec-15, Volume: 13, Issue:24

    A novel non-vanilloid VR1 antagonist consisting of a new vanilloid equivalent exhibits excellent analgesic effects as well as highly potent antagonistic activities in both capsaicin single channel and calcium uptake assays. In addition, the structural requirement for the vanilloid equivalent of the potent VR1 antagonist has also been elucidated.

    Topics: Analgesics; Animals; Capsaicin; Mice; Models, Molecular; Molecular Conformation; Pain; Receptors, Drug; Structure-Activity Relationship

2003
State-dependent phosphorylation of epsilon-isozyme of protein kinase C in adult rat dorsal root ganglia after inflammation and nerve injury.
    Journal of neurochemistry, 2003, Volume: 85, Issue:3

    The epsilon-isozyme of protein kinase C (PKCepsilon) and the vanilloid receptor 1 (VR1) are both expressed in dorsal root ganglion (DRG) neurons and are reported to be predominantly and specifically involved in nociceptive function. Using phosphospecific antibody against the C-terminal hydrophobic site Ser729 of PKCepsilon as a marker of enzyme activation, the state-dependent activation of PKCepsilon, as well as the expression of VR1 in rat DRG neurons, was evaluated in different experimental pain models in vivo. Quantitative analysis showed that phosphorylation of PKCepsilon in DRG neurons was significantly up-regulated after carrageen- and Complete Freund's Adjuvant-induced inflammation, while it was markedly down-regulated after chronic constriction injury. A double-labeling study showed that phosphorylation of PKCepsilon was expressed predominantly in VR1 immunoreactivity positive small diameter DRG neurons mediating the nociceptive information from peripheral tissue to spinal cord. The VR1 protein expression showed no significant changes after either inflammation or chronic constriction injury. These data indicate that functional activation of PKCepsilon has a close relationship with the production of inflammatory hyperalgesia and the sensitization of the nociceptors. Inflammatory mediator-induced activation of PKCepsilon and subsequent sensitization of VR1 to noxious stimuli by PKCepsilon may be involved in nociceptor sensitization.

    Topics: Animals; Behavior, Animal; Capsaicin; Carrageenan; Disease Models, Animal; Diterpenes; Freund's Adjuvant; Ganglia, Spinal; Hindlimb; Hyperalgesia; Inflammation; Ligation; Male; Neurons; Nociceptors; Pain; Pain Measurement; Peripheral Nervous System Diseases; Phosphorylation; Protein Kinase C; Protein Kinase C-epsilon; Rats; Rats, Sprague-Dawley; Receptors, Drug

2003
Differential effects of intraplantar capsazepine and ruthenium red on capsaicin-induced desensitization in mice.
    Pharmacology, biochemistry, and behavior, 2003, Volume: 75, Issue:1

    Intraplantar injection of capsaicin (1.6 microg/paw) into the mouse hindpaw produced an acute paw-licking/biting response. This study was designed (1) to investigate the antinociceptive effects of intraplantar administration of capsazepine, a competitive vanilloid receptor antagonist, and ruthenium red, a noncompetitive antagonist, in the nociceptive licking/biting response induced by intraplantar injection of capsaicin, and (2) to determine whether these compounds were able to prevent capsaicin-induced desensitization in mice. Both capsazepine and ruthenium red produced a dose-dependent reduction in the capsaicin-induced nociceptive response. In licking/biting response to intraplantar capsaicin, ruthenium red was more potent than capsazepine in producing antinociceptive activity as assayed by the capsaicin test. The first injection of capsaicin induced a profound desensitization to the second and third injections of capsaicin at the interval of 15 or 30 min. The capsaicin-induced desensitization was prevented dose-dependently by antinociceptive doses of capsazepine, whereas ruthenium red in doses exhibiting antinociceptive activity was without effect on capsaicin-induced desensitization. The present results suggest that both capsazepine and ruthenium red can produce a local peripheral antinociceptive action, which may be mediated by inhibiting the membrane ion channel activated by capsaicin. In addition, these data suggest that capsazepine may act in the mechanism clearly different from ruthenium red in the capsaicin-induced nociceptive desensitization.

    Topics: Animals; Behavior, Animal; Capsaicin; Dose-Response Relationship, Drug; Foot; Injections; Male; Mice; Nociceptors; Pain; Receptors, Drug; Ruthenium Red

2003
Adrenergic regulation of capsaicin-sensitive neurons in dental pulp.
    Journal of endodontics, 2003, Volume: 29, Issue:6

    Alpha adrenergic agonists (e.g. vasoconstrictors) represent one of the most commonly used drug classes in dentistry. Although adrenergic agonists have potent vascular effects, recent studies suggest that capsaicin-sensitive nociceptors may express adrenoceptors, suggesting that these drugs may directly modulate the function of an important class of pain-signaling neurons in peripheral tissues. In this study, we tested the hypothesis that adrenergic agonists inhibit activation of peripheral terminals of capsaicin-sensitive fibers innervating dental pulp. Pretreatment with epinephrine or clonidine significantly inhibited capsaicin-evoked release of immunoreactive calcitonin gene-related peptide from superfused bovine dental pulp. These studies suggest that adrenergic agonists may reduce postoperative pain in part via a direct inhibition of capsaicin-sensitive nociceptors. This finding may lead to the development of selective, peripherally acting, adrenergic analgesics. Moreover, because neuropeptide release alters blood flow, it is possible that the vascular effects of these drugs are caused by both vasoconstriction and inhibition of peripheral neuropeptide release.

    Topics: Adrenergic alpha-Agonists; Analysis of Variance; Animals; Calcitonin Gene-Related Peptide; Capsaicin; Cattle; Clonidine; Dental Pulp; Epinephrine; Ion Channels; Nerve Fibers, Unmyelinated; Nociceptors; Pain; Receptors, Adrenergic, alpha; Receptors, Drug

2003
Capsazepine inhibits thermal hyperalgesia but not nociception triggered by protease-activated receptor-2 in rats.
    Japanese journal of pharmacology, 2002, Volume: 89, Issue:2

    Protease-activated receptor-2 (PAR-2), expressed in sensory neurons, triggers thermal hyperalgesia, nociceptive behavior and spinal Fos expression in rats. In the present study, we examined if the nociceptive processing by PAR-2 is mediated by trans-activation of capsaicin receptors. The thermal hyperalgesia following an intraplantar (i.pl.) administration of the PAR-2-activating peptide SLIGRL-NH2 was completely abolished by the capsaicin receptor antagonist capsazepine. In contrast, neither the nociceptive behavior nor spinal Fos expression in response to i.pl. SLIGRL-NH2 were attenuated by capsazepine. Our data imply that trans-activation of capsaicin receptors by PAR-2 might be involved in the PAR-2-triggered thermal hyperalgesia, but not nociception.

    Topics: Amino Acid Sequence; Animals; Capsaicin; Hot Temperature; Hyperalgesia; Male; Pain; Peptide Fragments; Rats; Rats, Wistar; Receptor, PAR-2; Receptors, Thrombin

2002
Cloning and functional characterization of the guinea pig vanilloid receptor 1.
    Neuropharmacology, 2002, Volume: 43, Issue:3

    We have cloned a guinea pig Vanilloid receptor 1 (VR1) from a dorsal root ganglion cDNA library and expressed it in CHO cells. The receptor has been functionally characterized by measuring changes in intracellular calcium produced by capsaicin, low pH and noxious heat. Capsaicin produced a concentration-dependent increase in intracellular calcium in guinea pig VR1-CHO cells with an estimated EC(50) of 0.17 +/- 0.0065 micro M, similar to that previously reported for rat and human VR1. Olvanil and resiniferatoxin were also effective agonists (EC(50) values of 0.0087 +/- 0.0035 micro M and 0.067 +/- 0.014 micro M, respectively), but 12-phenylacetate 13-acetate 20-homovanillate (PPAHV) and anandamide showed little agonist activity up to 10 micro M. As with human and rat VR1, guinea pig VR1 was also activated by pH below 6.0 and by noxious heat (>42 degrees C). Capsazepine acted as an antagonist of capsaicin responses in guinea pig VR1-CHO cells (IC(50) of 0.324 +/- 0.041 micro M ), as seen at rat VR1. However, in contrast to its lack of activity against pH and heat responses at rat VR1, capsazepine was an effective antagonist of these responses at guinea pig VR1. Capsazepine displayed an IC(50) of 0.355 +/- 25 micro M against pH 5.5, and provided complete blockade of heat responses at 1 micro M. Thus, capsazepine can significantly inhibit calcium influx due to heat and pH 5.5 at guinea pig VR1 and human VR1 but is inactive against these activators at rat VR1.

    Topics: Aequorin; Amino Acid Sequence; Animals; Calcium; Capsaicin; CHO Cells; Chronic Disease; Cloning, Molecular; Cricetinae; Fluorescent Dyes; Fura-2; Guinea Pigs; Heart; Hydrogen-Ion Concentration; Luminescent Measurements; Molecular Sequence Data; Pain; Rats; Receptors, Drug; TRPV Cation Channels

2002
Amiloride-blockable acid-sensing ion channels are leading acid sensors expressed in human nociceptors.
    The Journal of clinical investigation, 2002, Volume: 110, Issue:8

    Many painful inflammatory and ischemic conditions such as rheumatoid arthritis, cardiac ischemia, and exhausted skeletal muscles are accompanied by local tissue acidosis. In such acidotic states, extracellular protons provoke the pain by opening cation channels in nociceptors. It is generally believed that a vanilloid receptor subtype-1 (VR1) and an acid-sensing ion channel (ASIC) mediate the greater part of acid-induced nociception in mammals. Here we provide evidence for the involvement of both channels in acid-evoked pain in humans and show their relative contributions to the nociception. In our psychophysical experiments, direct infusion of acidic solutions (pH > or = 6.0) into human skin caused localized pain, which was blocked by amiloride, an inhibitor of ASICs, but not by capsazepine, an inhibitor of VR1. Under more severe acidification (pH 5.0) amiloride was less effective in reducing acid-evoked pain. In addition, capsazepine had a partial blocking effect under these conditions. Amiloride itself neither blocked capsaicin-evoked localized pain in human skin nor inhibited proton-induced currents in VR1-expressing Xenopus oocytes. Our results suggest that ASICs are leading acid sensors in human nociceptors and that VR1 participates in the nociception mainly under extremely acidic conditions.

    Topics: Acid Sensing Ion Channels; Adult; Amiloride; Animals; Capsaicin; Female; Humans; Hydrogen-Ion Concentration; In Vitro Techniques; Male; Membrane Proteins; Nerve Tissue Proteins; Nociceptors; Oocytes; Pain; Psychophysics; Rats; Receptors, Drug; Recombinant Proteins; Sodium Channels; Xenopus

2002
The putative role of vanilloid receptor-like protein-1 in mediating high threshold noxious heat-sensitivity in rat cultured primary sensory neurons.
    The European journal of neuroscience, 2002, Volume: 16, Issue:8

    High threshold noxious heat-activated currents and vanilloid receptor-like protein-1 expression were studied in rat cultured primary sensory neurons to find out the molecule(s) responsible for high threshold noxious heat-sensitivity. The average temperature threshold and amplitude of high threshold noxious heat-activated currents were 51.6 +/- 0.13 degrees C and -2.0 +/- 0.1nA (at a holding potential of -60 mV), respectively. The current-voltage relationship of high threshold noxious heat-activated currents was linear at positive membrane potentials, while it showed a weak inward rectification at negative membrane potentials. The average reversal potential measured in control intracellular and extracellular solutions was 4.5 +/- 0.9 mV (n = 6). Ionic substitutions revealed that the high threshold noxious heat-activated current is a nonselective cationic current with calculated ionic permeabilities of Cs+ : Na+ : Ca2+ (1 : 1.3 : 4.5). Consecutive stimuli reduced the heat threshold from 52.2 +/- 1 to 48.4 +/- 1.4 degrees C and then to 44 +/- 0.7 degrees C (n = 3). High threshold noxious heat-activated currents could dose-dependently and reversibly be reduced by ruthenium red (100 nm-10 micro m) but not by capsazepine (10 micro m). The average longest diameter of high threshold noxious heat-sensitive neurons was 31.48 +/- 0.5 micro m (A = approximately 778 micro m2; n = 77). Twenty-three percent of the total neuronal population expressed vanilloid receptor-like protein-1. The average area of the vanilloid receptor-like protein-1-immunopositive cells was 1,696 +/- 65.3 micro m2 (d = approximately 46 micro m). Vanilloid receptor-like protein-1-expressing neurons did not express the vanilloid receptor 1. Comparison of our data with results obtained in vanilloid receptor-like protein-1-expressing non-neuronal cells and previous immunohistochemical findings suggests that high threshold noxious heat-activated currents are produced by vanilloid receptor-like protein-1 and that high threshold heat-sensitive dorsal root ganglion neurons are the perikarya of type I noxious heat-sensitive fibers.

    Topics: Afferent Pathways; Animals; Calcium Signaling; Capsaicin; Cell Size; Cells, Cultured; Dose-Response Relationship, Drug; Ganglia, Spinal; Hot Temperature; Immunohistochemistry; Male; Membrane Potentials; Neurons, Afferent; Nociceptors; Pain; Pain Threshold; Rats; Rats, Sprague-Dawley; Receptors, Drug; Ruthenium Red; Synaptic Transmission; Thermosensing; TRPV Cation Channels

2002
Interaction between vanilloid and glutamate receptors in the central modulation of nociception.
    European journal of pharmacology, 2002, Mar-29, Volume: 439, Issue:1-3

    This study investigates the effect of microinjections of capsaicin in the periaqueductal grey matter of rats on nociceptive behaviour and the possible interactions with NMDA and mGlu receptors. Intra-periaqueductal grey microinjection of capsaicin (1-3-6 nmol/rat) increased the latency of the nociceptive reaction in the plantar test. This effect was prevented by pretreatment with capsazepine (6 nmol/rat), which had no effect per se on the latency of the nociceptive reaction. 7-(Hydroxyimino)cyclopropa[b]chromen-1alpha-carboxylate ethyl ester (CPCCOEt, 50 nmol/rat) and 2-Methyl-6-(phenylethynyl)pyridine (MPEP, 50 nmol/rat), antagonists of mGlu(1) and mGlu(5) receptors, respectively, completely blocked the effect of capsaicin. Similarly, pretreatment with DL-2-Amino-5-phosphonovaleric acid (DL-AP5, 5 nmol/rat) and riluzole (4 nmol/rat), an NMDA receptor antagonist and a voltage-dependent Na(+) channels blocker which inhibits glutamate release, respectively, completely antagonized the effect of capsaicin. However, pretreatment with (2S)-alpha-Ethylglutamic acid (30 nmol/rat) and (RS)-alpha-Methylserine-O-phosphate (MSOP, 30 nmol/rat), antagonists of group II and group III mGlu receptors, respectively, had no effects on capsaicin-induced analgesia. Similarly, pretreatment with N-(piperidin-1-yl)-5-(4-chlophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (SR 141716A, 5 pmol/rat), a selective cannabinoid CB(1) receptor antagonist, did not affect the capsaicin-induced antinociception. In conclusion, this study shows that capsaicin might produce antinociception at the periaqueductal grey level by increasing glutamate release, which activates postsynaptic group I mGlu and NMDA receptors.

    Topics: 2-Amino-5-phosphonovalerate; Animals; Capsaicin; Chromones; Excitatory Amino Acid Antagonists; Male; Pain; Periaqueductal Gray; Phosphoserine; Piperidines; Protein Binding; Pyrazoles; Pyridines; Rats; Rats, Wistar; Receptors, Drug; Receptors, Glutamate; Riluzole; Rimonabant; Time Factors

2002
Spinal administration of capsazepine inhibits noxious evoked responses of dorsal horn neurons in non-inflamed and carrageenan inflamed rats.
    Brain research, 2002, May-10, Volume: 935, Issue:1-2

    Vanilloid VR1 receptors are located in the dorsal horn of the spinal cord. The aim of the present study was to determine the role of spinal vanilloid receptors (VR1) during nociceptive processing in control and inflamed rats. Effects of spinal administration of capsazepine (0.5-30 microM/50 microl), a competitive VR1 antagonist, on innocuous and noxious evoked responses of spinal neurones were studied in halothane anaesthetised rats. Transcutaneous electrical-evoked neuronal responses of spinal neurones were recorded in control and carrageenan (2%, 3 h) inflamed rats. Spinal application of capsazepine did not significantly alter Abeta-fibre evoked responses of neurones, however Adelta-fibre evoked responses were significantly inhibited by capsazepine in both non-inflamed and carrageenan inflamed rats (30 microM: non-inflamed 31+/-8% of control, P<0.01: carrageenan-inflamed 43+/-6% of control, P<0.01). Similarly, the evoked C-fibre mediated post-discharge responses of spinal neurones in non-inflamed and carrageenan inflamed rats were reduced by capsazepine (30 microM: non-inflamed 41+/-14% of control, P<0.01: carrageenan-inflamed 31+/-9% of control, P<0.01). These results demonstrate a role of spinal VR1 receptors during noxious, but not innocuous transmission, at the level of the spinal cord. The degree of effect of capsazepine on evoked neuronal responses was similar in control and inflamed rats, suggesting that the role of spinal VR1 receptors is not altered following short-term peripheral inflammation. Our data suggest that following noxious peripheral stimulation, spinal VR1 receptors are activated, but the endogenous ligands mediating this effect remain to be elucidated.

    Topics: Action Potentials; Afferent Pathways; Animals; Capsaicin; Carrageenan; Dose-Response Relationship, Drug; Inflammation; Injections, Spinal; Male; Nerve Fibers; Nerve Fibers, Myelinated; Neural Inhibition; Nociceptors; Pain; Posterior Horn Cells; Presynaptic Terminals; Rats; Rats, Sprague-Dawley; Reaction Time; Receptors, Drug

2002
Propofol activates vanilloid receptor channels expressed in human embryonic kidney 293 cells.
    Neuroscience letters, 2001, Oct-12, Volume: 312, Issue:1

    Propofol (2,6-diisopropylphenol) is an intravenous anesthetic agent structurally unrelated to any other intravenous anesthetics. We examined the effect of propofol on a rat vanilloid receptor that was expressed in the human embryonic kidney (HEK) 293 cells by using calcium imaging method. Propofol caused a concentration-dependent increase in [Ca(2+)](i) in the HEK293 cells with the receptor. These responses were inhibited by removing extracellular calcium ions. The propofol-evoked increase in [Ca(2+)](i) in the HEK293 cells with the receptor was partially inhibited by capsazepine, a competitive antagonist of capsaicin. We conclude that propofol acts as an agonist for the receptor.

    Topics: Anesthetics, Intravenous; Binding Sites; Calcium; Calcium Signaling; Capsaicin; Cells, Cultured; Diterpenes; Dose-Response Relationship, Drug; Humans; Membrane Potentials; Nervous System; Pain; Patch-Clamp Techniques; Propofol; Receptors, Drug

2001
Noxious heat-induced CGRP release from rat sciatic nerve axons in vitro.
    The European journal of neuroscience, 2001, Volume: 14, Issue:8

    Noxious heat may act as an endogenous activator of the ionotropic capsaicin receptor (VR1) and of its recently found homologue VRL1, expressed in rat dorsal root ganglion cells and present along their nerve fibres. We have previously reported that capsaicin induces receptor-mediated and Ca++-dependent calcitonin gene-related peptide (CGRP) release from axons of the isolated rat sciatic nerve. Here we extended the investigation to noxious heat stimulation and the transduction mechanisms involved. Heat stimulation augmented the CGRP release from desheathed sciatic nerves in a log-linear manner with a Q10 of approximately 15 and a threshold between 40 and 42 degrees C. The increases were 1.75-fold at 42 degrees C, 3.8-fold at 45 degrees C and 29.1-fold at 52 degrees C; in Ca++-free solution these heat responses were abolished or reduced by 71 and 92%, respectively. Capsazepine (10 microm) and Ruthenium Red (1 microm) used as capsaicin receptor/channel antagonists did not significantly inhibit the heat-induced release. Pretreatment of the nerves with capsaicin (100 microm for 30 min) caused complete desensitization to 1 microm capsaicin, but a significant heat response remained, indicating that heat sensitivity is not restricted to capsaicin-sensitive fibres. The sciatic nerve axons responded to heat, potassium and capsaicin stimulation with a Ca++-dependent CGRP release. Blockade of the capsaicin receptor/channels had little effect on the heat-induced neuropeptide release. We conclude therefore that other heat-activated ion channels than VR1 and VRL1 in capsaicin-sensitive and -insensitive nerve fibres may cause excitation, axonal Ca++ influx and subsequent CGRP release.

    Topics: Animals; Axons; Calcitonin Gene-Related Peptide; Capsaicin; Coloring Agents; Dose-Response Relationship, Drug; Ganglia, Spinal; Hot Temperature; Male; Nociceptors; Pain; Potassium; Rats; Rats, Wistar; Receptors, Drug; Ruthenium Red; Sciatic Nerve

2001
Involvement of vanilloid receptor VR1 and prostanoids in the acid-induced writhing responses of mice.
    Life sciences, 2001, Nov-02, Volume: 69, Issue:24

    We found that intraperitoneal injection of organic acids, such as propionic and lactic acid, are able to develop writhing responses in mice similarly as that of acetic acid. These acid-induced writhing reactions were significantly attenuated by capsazepine, a VR1 receptor-specific antagonist, but the phenylbenzoquinone-induced one was not, suggesting that the acids but not phenylbenzoquinone activate the VR1 receptor, which is involved in polymodal pain perception. Hoe 140, a bradykinin B2 receptor antagonist, also suppressed the acid-induced writhing response. Furthermore, these writhing responses were significantly suppressed after neonatal treatment with capsaicin, which treatment is known to destroy peripheral sensory afferent C-fibers. Capsazepine and Hoe 140 did not further attenuate the already reduced writhing responses of capsaicin-treated mice, suggesting that the acids stimulate the VR1 and the bradykinin B2 receptor in the pathway comprising sensory afferent C-fibers. On the other hand, indomethacin further significantly suppressed the writhing number of the capsaicin-treated animals, suggesting that the acid-induced pain perception requires prostanoid receptors not only in the pathway via capsaicin-sensitive C-fibers but also in other sensory pathways. These results provide the first evidence for the involvement of the vanilloid receptor in the acid-induced inflammatory pain perception via sensory C-fibers in addition to the known mediators bradykinin, neurokinins, and prostanoids.

    Topics: Acetic Acid; Animals; Animals, Newborn; Anti-Inflammatory Agents, Non-Steroidal; Behavior, Animal; Benzoquinones; Bradykinin; Capsaicin; Disease Models, Animal; Female; Indomethacin; Lactic Acid; Male; Mice; Mice, Inbred ICR; Pain; Pain Measurement; Propionates; Prostaglandins; Receptors, Drug; Receptors, Prostaglandin

2001
In vivo pharmacology of SDZ 249-665, a novel, non-pungent capsaicin analogue.
    Pain, 2000, Dec-15, Volume: 89, Issue:1

    Capsaicin and analogues are valuable analgesic agents when administered to mammals, including humans. However, their pungency and the effects on the cardiovascular and respiratory systems through their general activation of small calibre (nociceptive) primary afferents severely limit their use. Recently, structure activity analysis revealed that the initial pungent and general excitatory effects can be prevented by structural modifications in such a way that the analgesic activity is retained. In this paper we present SDZ 249-665, a capsaicin analogue which produced analgesia in the mouse and anti-hyperalgesic effects in the rat and guinea pig. SDZ 249-665 was administered p.o., s.c. and i.v. in models of nociceptive pain, such as tail flick latency in response to a noxious thermal stimulus and acetic acid-induced writhing in mice, and in models of inflammatory mechanical hyperalgesia induced by turpentine or carrageenan in the rat and guinea pig, respectively. SDZ 249-665 was effective in the tail flick and the writhing assays and produced significant anti-hyperalgesic effects in the inflammatory models. The efficacy of SDZ 245-665 was similar to that of capsaicin, however, it was significantly more potent. SDZ 249-665 did not produce any irritancy in a nose wipe assay in guinea pigs or an eye irritancy assay in rats, while capsaicin was clearly irritant in both cases. Furthermore, unlike capsaicin, SDZ 249-665 did not produce unwanted side effects such as bronchoconstriction and blood pressure changes in the analgesic/anti-hyperalgesic dose range. Thus, a clear analgesic therapeutic window exists for SDZ 249-665. In summary, SDZ 249-665 is a potent orally active, analgesic/anti-hyperalgesic agent in mouse, rat and guinea pig. It lacks the excitatory effects associated with capsaicin and other close analogues, and therefore provides a clear therapeutic window for use in painful conditions. In addition to this favourable profile, no sign of tolerance was detected after a 5 day repeated dose treatment.

    Topics: Analgesics; Animals; Behavior, Animal; Blinking; Blood Pressure; Bronchoconstriction; Capsaicin; Carrageenan; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Tolerance; Eye; Female; Ganglia, Spinal; Guinea Pigs; Hindlimb; Hyperalgesia; Irritants; Male; Mice; Mice, Inbred Strains; Nociceptors; Nose; Odorants; Pain; Pain Measurement; Rats; Rats, Sprague-Dawley; Turpentine; Urea

2000
Rat peripheral nerve components release calcitonin gene-related peptide and prostaglandin E2 in response to noxious stimuli: evidence that nervi nervorum are nociceptors.
    Neuroscience, 1999, Volume: 92, Issue:1

    The presence of an intrinsic afferent innervation of nerves and their connective tissues (nervi nervorum) suggests that these neural elements participate in sensation and pathological processes affecting nerves. Primary afferent nociceptors contain and release neuropeptides including calcitonin gene-related peptide, implicated in inflammatory vasodilatation. We sought to evaluate the ability of different peripheral nerve components, in vitro, to release calcitonin gene-related peptide and prostaglandin E2 in response to electrical and noxious chemical stimuli, using sensitive enzyme immunoassays. We observed significant increases in both calcitonin gene-related peptide and prostaglandin E2 in response to a mixture of inflammatory mediators (bradykinin, histamine, and serotonin; 10(-5) M) applied to the intact nerves (+37% and +700%, respectively) and isolated sheaths (35% and 430%, respectively), but not when this mixture was applied to isolated axons. Proximal (antidromic) but not distal (orthodromic) electrical stimulation also evoked a comparable release of calcitonin gene-related peptide (+30%) from intact nerves. These results suggest that nervi nervorum nociceptors participate in neural inflammation. Capsaicin (10(-6) M) elicited a very large release of calcitonin gene-related peptide when applied to either the intact nerve (+400%), isolated sheaths (+500%), or isolated axons (1400%). The latter effect was substantially but not completely blocked by Ruthenium Red and capsazepine, and was completely blocked using a calcium-free bathing solution. The results support the presence of capsaicin receptors in peripheral nerves that can effect calcitonin gene-related peptide release from axons as well as from terminals.

    Topics: Animals; Calcitonin Gene-Related Peptide; Calcium; Capsaicin; Dinoprostone; Electric Stimulation; Inflammation Mediators; Male; Nociceptors; Pain; Peripheral Nerves; Rats; Rats, Wistar; Ruthenium Red; Stimulation, Chemical

1999
A capsaicin-receptor antagonist, capsazepine, reduces inflammation-induced hyperalgesic responses in the rat: evidence for an endogenous capsaicin-like substance.
    Neuroscience, 1998, Volume: 86, Issue:2

    In the present study, the presence of an endogenous capsaicin-like substance and the role of capsaicin receptors in nociception during inflammation were assessed using Fos immunohistochemistry and the paw-withdrawal test in rats. Intradermal injection of carrageenan in the hind-paw produced inflammation in the foot pad, increased the number of cells exhibiting Fos-like immunoreactivity in the dorsal horn of the spinal cord, and decreased the paw-withdrawal latency. Intradermal injection of capsazepine, a capsaicin-receptor antagonist, significantly reduced the number of cells exhibiting Fos-like immunoreactivity, significantly increased the paw-withdrawal latency, but did not decrease inflammation induced by carrageenan injection. Intradermal injection of capsaicin or formalin also increased Fos-positive neurons. Capsaicin- or formalin-induced Fos expression was reduced in both cases by pretreatment of capsazepine, but to a much lesser extent for formalin. The capsazepine inhibition of carrageenan inflammation-induced hyperalgesic responses strongly suggests that an endogenous capsaicin-like substance is released in inflamed tissues and produces nociceptive neural impulses by acting on capsaicin receptors present on sensory neurons. Furthermore, our results indicate that capsaicin receptors take part only in generating nociceptive signals in sensory neurons, but not in activating the inflammation-promoting cells.

    Topics: Animals; Capsaicin; Carrageenan; Functional Laterality; Hindlimb; Hyperalgesia; Inflammation; Male; Neurons; Pain; Rats; Rats, Sprague-Dawley; Receptors, Drug; Reflex; Spinal Cord

1998
The responses of rat trigeminal ganglion neurons to capsaicin and two nonpungent vanilloid receptor agonists, olvanil and glyceryl nonamide.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 1997, Jun-01, Volume: 17, Issue:11

    Capsaicin, the pungent ingredient in hot pepper, activates and subsequently desensitizes a subset of polymodal nociceptors. Because its initial application to skin produces pain, nonpungent analogs such as olvanil and glyceryl nonivamide (GLNVA) were synthesized to enhance its clinical use. To explore how these nonpungent analogs differ from capsaicin, whole-cell patch-clamp recordings were performed on cultured rat trigeminal ganglion neurons. In neurons held at -60 mV, capsaicin, olvanil, and GLNVA were found to activate one or two kinetically distinct inward currents. Two inward currents were also activated when extracellular Ca2+ was replaced with Ba2+ and also when intracellular chloride was replaced by aspartate. The reversal potentials of the rapidly and slowly activating currents were 15.3 +/- 6 and -4.0 +/- 2.5 mV, respectively. These data provide strong evidence for subtypes of vanilloid receptors. One difference among these agonists is that, on average, the activation kinetics of the currents evoked by 1 microM olvanil and 30 microM GLNVA are considerably slower than those evoked by 1 microM capsaicin. Measurements of the peak current, Ip, versus agonist concentration were fit to the Hill equation to yield values of the half maximal concentrations (K1/2), and the Hill coefficients (n). For capsaicin, olvanil, and GLNVA, K1/2 = 0.68, 0.59, and 27.0 microM and n = 1.38, 1.32, and 1.24, respectively. We propose that olvanil and GLNVA are nonpungent because they activate different subtypes of receptors and/or because of their activation kinetics (compared with capsaicin) are, on average, slower than the rate they inhibit action potentials from polymodal nociceptors.

    Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Capsaicin; Cells, Cultured; Dose-Response Relationship, Drug; Glycerol; Neurons; Pain; Patch-Clamp Techniques; Rats; Rats, Sprague-Dawley; Receptors, Drug; Tachyphylaxis; Taste; Trigeminal Ganglion

1997
Antinociception induced by civamide, an orally active capsaicin analogue.
    Pain, 1997, Volume: 71, Issue:3

    The antinociceptive effects of a novel capsaicin analogue, civamide (cis-8-methyl-N-vanillyl-6-nonenamide), given orally to adult rats were examined. In the formalin test, civamide significantly suppressed the flinch response, particularly phase 2, in a dose-dependent fashion (20-200 mg/kg). This inhibitory effect started 1 h after application, and was maintained for 4-7 days. A competitive capsaicin antagonist, capsazepine (15 mg/kg, s.c.), reversed the antinociceptive action of civamide (200 mg/kg) on the formalin test when it was given either 5 min or 55 min after oral civamide delivery. In contrast, capsazepine delivered 2 days after civamide had no effect upon the depressed formalin response. Civamide produced a significant increase in the response latency on the thermal paw withdrawal test, which persisted for 2-3 days. Civamide produced a modest, but statistically significant, reversal of low tactile thresholds otherwise observed in the Chung neuropathic rats. Morbidity (approximately 10%) was observed which was secondary to bronchial constriction occurring with gastric reflux. Civamide at the doses given did not produce motor dysfunction. Neither calcitonin gene-related peptide (CGRP) nor substance P (SP) concentrations in dorsal or ventral spinal cord were altered by civamide (200 mg/kg) up to 5 days, whereas CGRP, but not SP, in dorsal root ganglia (DRG) and sciatic nerves was modestly reduced at 1 day after the delivery. These data suggest that an orally bioavailable capsaicin analogue, civamide, possessed analgesic activity with respect to several noxious stimuli, including inflammation-induced hyperalgesia, noxious thermal stimulation and nerve injury-induced tactile allodynia. The rapid onset and lack of change in the peptide levels in dorsal spinal cord suggests that the analgesic action of civamide is primarily a result of desensitization at the afferent terminals. The antinociception of civamide is probably mediated by at least two mechanisms: (i) an acute receptor occupancy dependent effect; and (ii) a persistent and receptor independent effect which is initiated by the acute exposure to the drug.

    Topics: Administration, Oral; Analgesics; Animals; Calcitonin Gene-Related Peptide; Capsaicin; Hot Temperature; Male; Pain; Pain Measurement; Rats; Rats, Sprague-Dawley; Stereoisomerism; Substance P

1997
Ruthenium red and capsazepine antinociceptive effect in formalin and capsaicin models of pain in mice.
    Neuroscience letters, 1997, Oct-10, Volume: 235, Issue:1-2

    This study investigates the antinociception caused by intradermal (i.d) or intracerebroventricular (i.c.v.) injection of the capsaicin receptor antagonist capsazepine (CPZ), and ruthenium red (RR) (a cation-selective antagonist coupled to vanilloid receptor of capsaicin), on the chemical nociception caused by i.d. injection of formalin (FM) and capsaicin (CAP) into the mouse paw. The i.d. injection of either CPZ or RR in association with FM or CAP, inhibited the early phase, and to a lesser extent the late phase, of the FM, as well as CAP-induced nociception. Given i.c.v., both CPZ and RR caused discrete antinociception in the FM (both phases), while producing graded inhibition of CAP. The actions of CPZ and RR were insensitive to i.p. injection of naloxone (5 mg/kg). These results indicate that i.d. injection of CPZ and RR produce marked antinociception in chemical models of neurogenic pain induced by CAP and FM in mice. However, administered by supraspinal site, both CPZ and RR were inactive in inhibiting FM, but prevented, in a graded manner, CAP-induced algesic response, suggesting the participation of distinct mechanisms in the nociception induced by FM and CAP. Thus, vanilloid selective antagonists seem to be useful tools for investigating the nociception elicited by CAP and FM.

    Topics: Analgesics; Animals; Capsaicin; Dose-Response Relationship, Drug; Formaldehyde; Injections, Intradermal; Injections, Intraventricular; Male; Mice; Naloxone; Pain; Ruthenium Red

1997