capsazepine has been researched along with Myocardial-Infarction* in 3 studies
3 other study(ies) available for capsazepine and Myocardial-Infarction
Article | Year |
---|---|
Intrathecal lentivirus-mediated RNA interference targeting nerve growth factor attenuates myocardial ischaemia-reperfusion injury in rat.
Nerve growth factor (NGF) has been implicated in hyperalgesia by sensitising nociceptors. A role for NGF in modulating myocardial injury through ischaemic nociceptive signalling is plausible. We examined whether inhibition of spinal NGF attenuates myocardial ischaemia-reperfusion injury and explored the underlying mechanisms.. In adult rats, lentivirus-mediated short-hairpin RNA targeted at reducing NGF gene expression (NGF-shRNA) or a transient receptor potential vanilloid 1 (TRPV1) antagonist (capsazepine) was injected intrathecally before myocardial ischaemia-reperfusion. Infarct size (expressed as the ratio of area at risk) and risk of arrhythmias were quantified. Whole-cell clamp patch electrophysiology was used to record capsaicin currents in primary dorsal root ganglion neurones. The co-expression of substance P (SP) and calcitonin gene-related peptide (CGRP), plus activation of TRPV1, protein kinase B (Akt) and extracellular signal-regulated kinase (ERK) were also quantified.. NGF levels increased by 2.95 (0.34)-fold in dorsal root ganglion and 2.12 (0.27)-fold in spinal cord after myocardial ischaemia-reperfusion injury. Intrathecal injection of NGF-shRNA reduced infarct area at risk from 0.58 (0.02) to 0.37 (0.02) (P<0.01) and reduced arrhythmia score from 3.67 (0.33) to 1.67 (0.33) (P<0.01). Intrathecal capsazepine was similarly cardioprotective. NGF-shRNA suppressed expression of SP/CGRP and activation of Akt/ERK and TRPV1 in spinal cord. NGF increased capsaicin current amplitude from 144 (42) to 840 (132) pA (P<0.05), which was blocked by the TRPV1 antagonist 5'-iodoresiniferatoxin. Exogenous NGF enhanced capsaicin-induced Akt/ERK and TRPV1 activation in PC12 neuroendocrine tumour cells in culture.. Spinal NGF contributes to myocardial ischaemia-reperfusion injury by mediating nociceptive signal transmission. Topics: Animals; Arrhythmias, Cardiac; Capsaicin; Cardiotonic Agents; Ganglia, Spinal; Genetic Therapy; Injections, Spinal; Lentivirus; MAP Kinase Signaling System; Myocardial Infarction; Myocardial Reperfusion Injury; Nerve Growth Factor; Patch-Clamp Techniques; PC12 Cells; Rats; Rats, Sprague-Dawley; RNA, Small Interfering; TRPV Cation Channels | 2019 |
Transient receptor potential vanilloid 1 inhibitors block laparotomy- and opioid-induced infarct size reduction in rats.
In light of the opioid epidemic, physicians are increasingly prescribing non-opioid analgesics to surgical patients. Transient receptor potential vanilloid 1 (TRPV1) inhibitors are potentially alternative pain therapeutics for surgery. Here, we examined in rodents whether the cardioprotection conferred by two common procedures during surgery, a laparotomy or morphine delivery, is mediated by the TRPV1 channel. We further tested whether an experimental analgesic peptide (known as P5) targeted against the TRPV1 C-terminus region interferes with laparotomy- or morphine-induced cardioprotection.. Male Sprague-Dawley rats were subjected to 30 min coronary occlusion followed by 120 min reperfusion. Before ischaemia, a laparotomy with or without capsaicin application (0.1% cream, a TRPV1 activator) was performed. Additional rats were given morphine (0.3 mg·kg. A laparotomy, in addition to combining a laparotomy with capsaicin cream, reduced infarct size versus control. Morphine, in addition to combining morphine administration with capsaicin cream, also reduced infarct size versus control. When TRPV1 inhibitors capsazepine or P5 were given, either TRPV1 inhibitor abolished the infarct size reduction mediated by a laparotomy or morphine.. Inhibiting the TRPV1 channel blocks laparotomy- or morphine-induced cardioprotection. Impaired organ protection may be a potential pitfall of using TRPV1 inhibitors for pain control. Topics: Analgesics, Opioid; Animals; Capsaicin; Male; Myocardial Infarction; Pyridines; Rats; Rats, Sprague-Dawley; TRPV Cation Channels | 2017 |
Involvement of capsaicin-sensitive sensory nerves in cardioprotection of rutaecarpine in rats.
In the present study, we examined whether rutaecarpine protects against myocardial ischemia-reperfusion injury in rats and whether the protective effects of rutaecarpine are related to activation of capsaicin-sensitive sensory nerves. Rats were pretreated with rutaecarpine 10 min before the experiment, and then the left main coronary artery of rat hearts was subjected to 60-min occlusion followed by 3-h reperfusion. The infarct size, serum concentration of creatine kinase, and CGRP concentration in plasma were measured. Pretreatment with rutaecarpine (100 or 300 microg/kg, i.v.) significantly reduced infarct size and creatine kinase release concomitantly with a significant increase in plasma concentrations of CGRP. These effects of rutaecarpine were completely abolished by capsazepine (38 mg/kg, s.c.), a competitive vanilloid receptor antagonist, or by pretreatment with capsaicin (50 mg/kg, s.c.), which selectively depletes transmitters in capsaicin-sensitive sensory nerves. These results suggest that rutaecarpine protects against myocardial ischemia-reperfusion injury in rats and that the protective effects of rutaecarpine are related to activation of capsaicin-sensitive sensory nerves via activating vanilloid receptors. Topics: Alkaloids; Animals; Calcitonin Gene-Related Peptide; Capsaicin; Cardiotonic Agents; Creatine Kinase; Heart; Indole Alkaloids; Male; Myocardial Infarction; Myocardial Reperfusion Injury; Neurons, Afferent; Organ Size; Quinazolines; Rats; Rats, Wistar | 2003 |