capsazepine has been researched along with Facial-Pain* in 5 studies
5 other study(ies) available for capsazepine and Facial-Pain
Article | Year |
---|---|
Topics: Analgesics; Animals; Chronic Pain; Fabaceae; Facial Pain; Lectins; Nociception; Rats; Rodentia; TRPV Cation Channels; Zebrafish; Zebrafish Proteins | 2022 |
Antinociceptive effect of natural and synthetic alkamides involves TRPV1 receptors.
To establish the role of TRPV1 receptor in the antinociceptive effect of natural alkamides (i.e. affinin, longipinamide A, longipenamide A and longipenamide B) isolated from Heliopsis longipes (A. Gray) S.F. Blake and some related synthetic alkamides (i.e. N-isobutyl-feruloylamide and N-isobutyl-dihydroferuloylamide).. The orofacial formalin test was used to assess the antinociceptive activity of natural (1-30 μg, orofacial region) and synthetic alkamides (0.1-100 μg, orofacial region). The alkamide capsaicin was used as positive control, while capsazepine was used to evaluate the possible participation of TRPV1 receptor in alkamide-induced antinociception.. Natural (1-30 μg) and synthetic (0.1-100 μg) alkamides administered to the orofacial region produced antinociception in mice. The antinociceptive effect induced by affinin, N-isobutyl-feruloylamide and N-isobutyl-dihydroferuloylamide was antagonized by capsazepine but not by vehicle.. These results suggest that alkamide affinin, longipinamide A, longipenamide A and longipenamide B isolated from Heliopsis longipes as well as the synthesized analogue compounds N-isobutyl-feruloylamide and N-isobutyl-dihydroferuloylamide produce their effects by activating TRPV1 receptor and they may have potential for the development of new analgesic drugs for the treatment of orofacial pain. Topics: Amides; Analgesics; Animals; Asteraceae; Capsaicin; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Design; Facial Pain; Female; Mice; Pain Measurement; TRPV Cation Channels | 2017 |
Role of peripheral and central TRPV1 receptors in facial heat hyperalgesia in streptozotocin-induced diabetic rats.
There is increasing evidence that diabetes may be related to sensory changes in the trigeminal system. Long lasting facial heat hyperalgesia has been described in diabetic rats, but the mechanisms remain to be elucidated. Herein, the contribution of peripheral and central TRPV1 receptors to facial heat hyperalgesia in diabeticrats was investigated. Diabetes was induced in male Wistar rats by streptozotocin (60mg/kg, i.p) and facial heat hyperalgesia was assessed once a week up to four weeks. The role of TRPV1 receptors in the heat hyperalgesia in diabetic rats was evaluated through: 1) the ablation of TRPV1 receptors by resiniferatoxin (RTX) treatment and 2) injection of the TRPV1 antagonist, capsazepine, into the upper lip, trigeminal ganglion or medullary subarachnoid space, at doses that completed prevented the heat hyperalgesia induced by capsaicin in naïve rats. Western blot was used to estimate the changes in TRPV1 expression in diabetic rats. Diabetic rats exhibited facial heat hyperalgesia from the first up to the fourth week after streptozotocin injection, which was prevented by insulin treatment. Ablation of TRPV1-expressing fibers prevented facial hyperalgesia in diabetic rats. Capsazepine injection in all sites resulted in significant reduction of facial heat hyperalgesia in diabetic rats. Diabetic rats exhibited a significant decrease in TRPV1 expression in the trigeminal nerve, increased expression in the trigeminal ganglion and no changes in subnucleus caudalis when compared to normoglycemic ones. In conclusion, our results suggest that facial heat hyperalgesia in diabetic rats is maintained by peripheral and central TRPV1 receptors activation. Topics: Animals; Capsaicin; Diabetes Mellitus, Experimental; Diterpenes; Face; Facial Pain; Hot Temperature; Hyperalgesia; Male; Pain Threshold; Rats; Rats, Wistar; Trigeminal Ganglion; TRPV Cation Channels | 2017 |
Operant behavioral responses to orofacial cold stimuli in rats with chronic constrictive trigeminal nerve injury: effects of menthol and capsazepine.
Both spinal and trigeminal somatosensory systems use the TRPM8 channel as a principal transducer for detecting cold stimuli. It is currently unclear whether this cold transducer may play a role in trigeminal neuropathic pain manifesting cold allodynia and hyperalgesia. In the present study, trigeminal neuropathy was induced by chronic constrictive nerve injury of the infraorbital nerve (ION-CCI). Behavioral responses to cold stimuli in orofacial regions were assessed by the newly developed orofacial operant test in the ION-CCI rats. We tested menthol and capsazepine, two compounds that can activate and inhibit TRPM8 respectively, on orofacial operant responses to cold stimuli in ION-CCI rats. Testing animals performed operant tasks by voluntarily contacting their orofacial regions to a cold stimulation module in order to access sweetened milk as a reward, and contact time and number of the operant behaviors were automatically recorded. Total contact time was significantly reduced at the cooling temperatures of 17°C and 12°C in ION-CCI group in comparison with sham group, indicating the presence of cold allodynia and hyperalgesia in ION-CCI rats. When menthol was administered to ION-CCI rats, total contact time was further reduced and total contact number increased at the cooling temperatures. In contrast, after administration of capsazepine to ION-CCI rats, total contact time was significantly increased at the cooling temperatures. The behavioral outcomes support the idea that TRPM8 plays a role in cold allodynia and hyperalgesia following chronic trigeminal nerve injury. Topics: Animals; Behavior, Animal; Capsaicin; Cold Temperature; Conditioning, Operant; Facial Nerve; Facial Pain; Hyperalgesia; Male; Menthol; Neuralgia; Pain Measurement; Physical Stimulation; Rats; Rats, Sprague-Dawley; Trigeminal Nerve; Trigeminal Nerve Injuries; TRPM Cation Channels | 2013 |
Activation of TRPV1 and TRPA1 leads to muscle nociception and mechanical hyperalgesia.
The involvement of TRPV1 and TRPA1 in mediating craniofacial muscle nociception and mechanical hyperalgesia was investigated in male Sprague-Dawley rats. First, we confirmed the expression of TRPV1 in masseter afferents in rat trigeminal ganglia (TG), and provided new data that TRPA1 is also expressed in primary afferents innervating masticatory muscles in double-labeling immunohistochemistry experiments. We then examined whether the activation of each TRP channel in the masseter muscle evokes acute nocifensive responses and leads to the development of masseter hypersensitivity to mechanical stimulation using the behavioral models that have been specifically designed and validated for the craniofacial system. Intramuscular injections with specific agonists for TRPV1 and TRPA1, capsaicin and mustard oil (MO), respectively, produced immediate nocifensive hindpaw responses followed by prolonged mechanical hyperalgesia in a concentration-dependent manner. Pretreatment of the muscle with a TRPV1 antagonist, capsazepine, effectively attenuated the capsaicin-induced muscle nociception and mechanical hyperalgesia. Similarly, pretreatment of the muscle with a selective TRPA1 antagonist, AP18, significantly blocked the MO-induced muscle nociception and mechanical hyperalgesia. We confirmed these data with another set of selective antagonist for TRPV1 and TRPA1, AMG9810 and HC030031, respectively. Collectively, these results provide compelling evidence that TRPV1 and TRPA1 can functionally contribute to muscle nociception and hyperalgesia, and suggest that TRP channels expressed in muscle afferents can engage in the development of pathologic muscle pain conditions. Topics: Acrylamides; Afferent Pathways; Animals; Ankyrins; Bridged Bicyclo Compounds, Heterocyclic; Calcium Channels; Capsaicin; Disease Models, Animal; Dose-Response Relationship, Drug; Facial Pain; Hyperalgesia; Injections, Intramuscular; Male; Masticatory Muscles; Mustard Plant; Nociceptors; Pain Measurement; Pain Threshold; Plant Oils; Rats; Rats, Sprague-Dawley; Sensory Receptor Cells; Sensory System Agents; Trigeminal Ganglion; TRPA1 Cation Channel; TRPC Cation Channels; TRPV Cation Channels | 2009 |