capsazepine and Cholestasis

capsazepine has been researched along with Cholestasis* in 1 studies

Other Studies

1 other study(ies) available for capsazepine and Cholestasis

ArticleYear
Leukotriene B4 mediates inflammation via TRPV1 in duct obstruction-induced pancreatitis in rats.
    Pancreas, 2011, Volume: 40, Issue:5

    We tested the hypothesis that leukotriene B4 (LTB4) mediates pancreatic inflammation in rats via activation of the transient receptor potential vanilloid 1 (TRPV1).. Leukotriene B4 or a vehicle was administered to adult rats via celiac axis injection after pretreatment with the TRPV1 antagonist, capsazepine, or vehicle, and the severity of subsequent pancreatitis was assessed by measuring pancreatic edema, myeloperoxidase (MPO) activity, and histological grading. In a second experiment, acute pancreatitis was induced by common pancreaticobiliary duct ligation. Six hours after surgery, pancreatic tissue levels of LTB4 were determined by enzyme-linked immunosorbent assay. Also, the effects of inhibition of LTB4 biosynthesis by pretreatment with the 5-lipoxygenase-activating peptide inhibitor, MK-886, were determined.. Celiac axis administration of LTB4 significantly increased pancreatic edema and MPO activity, and produced histological evidence of pancreatic edema, neutrophil infiltration, and necrosis. Capsazepine pretreatment significantly reduced all inflammatory parameters in LTB4-induced pancreatitis. Pancreatic tissue levels of LTB4 were significantly elevated in rats that underwent common pancreaticobiliary duct ligation compared with control rats. MK-886 pretreatment significantly inhibited pancreatic edema, histological damage, and pancreatic MPO concentrations.. Common pancreaticobiliary duct obstruction causes an increase in pancreatic LTB4 concentrations that in turn mediates activation of TRPV1 resulting in acute pancreatitis.

    Topics: Animals; Capsaicin; Cholestasis; Disease Models, Animal; Indoles; Inflammation Mediators; Leukotriene B4; Ligation; Lipoxygenase Inhibitors; Male; Models, Biological; Pancreatitis; Peroxidase; Rats; Rats, Sprague-Dawley; TRPV Cation Channels

2011