capsazepine has been researched along with Asthma* in 4 studies
4 other study(ies) available for capsazepine and Asthma
Article | Year |
---|---|
Role of transient receptor potential ion channels and evoked levels of neuropeptides in a formaldehyde-induced model of asthma in BALB/c mice.
Asthma is a complex pulmonary inflammatory disease characterized by the hyper-responsiveness, remodeling and inflammation of airways. Formaldehyde is a common indoor air pollutant that can cause asthma in people experiencing long-term exposure. The irritant effect and adjuvant effect are the two possible pathways of formaldehyde promoted asthma.. To explore the neural mechanisms and adjuvant effect of formaldehyde, 48 Balb/c mice in six experimental groups were exposed to (a) vehicle control; (b) ovalbumin; (c) formaldehyde (3.0 mg/m(3)); (d) ovalbumin+formaldehyde (3.0 mg/m(3)); (e) ovalbumin+formaldehyde (3.0 mg/m(3))+HC-030031 (transient receptor potential ankyrin 1 antagonist); (f) ovalbumin+formaldehyde (3.0 mg/m(3))+ capsazepine (transient receptor potential vanilloid 1 antagonist). Experiments were conducted after 4 weeks of combined exposure and 1-week challenge with aerosolized ovalbumin. Airway hyper-responsiveness, pulmonary tissue damage, eosinophil infiltration, and increased levels of interleukin-4, interleukin-6, interleukin-1β, immunoglobulin E, substance P and calcitonin gene-related peptide in lung tissues were found in the ovalbumin+formaldehyde (3.0 mg/m(3)) group compared with the values seen in ovalbumin -only immunized mice. Except for interleukin-1β levels, other changes in the levels of biomarker could be inhibited by HC-030031 and capsazepine.. Formaldehyde might be a key risk factor for the rise in asthma cases. Transient receptor potential ion channels and neuropeptides have important roles in formaldehyde promoted-asthma. Topics: Acetanilides; Animals; Asthma; Calcitonin Gene-Related Peptide; Capsaicin; Disease Models, Animal; Enzyme-Linked Immunosorbent Assay; Formaldehyde; Immunoglobulin E; Immunohistochemistry; Interleukin-1beta; Interleukin-4; Interleukin-6; Lung; Male; Mice; Mice, Inbred BALB C; Neuropeptides; Ovalbumin; Purines; Substance P; Transient Receptor Potential Channels | 2013 |
Effect of TRPV1 channel on the proliferation and apoptosis in asthmatic rat airway smooth muscle cells.
Hyperplasia of airway smooth muscle cells (ASMC) is a major contributor to airway remodeling in asthma. Transient receptor potential vanilloid 1 (TRPV1) is an important channel to mediate Ca(2+) influx. This study explores the expression of TRPV1 channel and its effect on the proliferation and apoptosis in rat ASMC, in order to find a new target to treat airway remodeling in asthma.. Rats were sensitized and challenged with ovalbumin to replicate asthmatic models. Proliferating cell nuclear antigen (PCNA) was detected by immunohistochemistry. Reverse transcriptase-polymerase chain reaction, immunocytochemistry, and Western blot were used to detect the mRNA and protein expression of TRPV1 channel. Intracellular calcium ([Ca(2+)]i) was detected using confocal fluorescence Ca(2+) imaging. [(3)H] thymidine incorporation and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay were used to observe the DNA synthesis and proliferation. TUNEL assay was used to detect the apoptosis of ASMC.. (1) The expression of PCNA was significantly increased in intact asthmatic rat ASMC. (2) The expression of TRPV1 channel was significantly increased in asthmatic rat ASMC. (3) [Ca(2+)]i in ASMC of the asthmatic group was significantly increased. After treatment with TRPV1 agonist capsaicin (CAP), [Ca(2+)]i was further increased, whereas [Ca(2+)]i was decreased after administration of TRPV1 antagonist capsazepine (CPZ) in ASMC of the asthmatic group. (4) The DNA synthesis and absorbance of MTT were significantly increased, while apoptosis was significantly decreased in asthmatic ASMC. CAP further enhanced proliferation and decreased apoptosis. CPZ significantly inhibited the effect of CAP in asthmatic ASMC.. TRPV1 channel was involved in the regulation of proliferation and apoptosis in asthmatic ASMC. Topics: Airway Remodeling; Animals; Apoptosis; Asthma; Calcium; Capsaicin; Cell Proliferation; Cells, Cultured; Disease Models, Animal; Hyperplasia; Male; Myocytes, Smooth Muscle; Ovalbumin; Proliferating Cell Nuclear Antigen; Rats; Rats, Sprague-Dawley; Respiratory System; TRPV Cation Channels | 2013 |
Capacity of capsazepinoids to relax human small airways and inhibit TLR3-induced TSLP and IFNβ production in diseased bronchial epithelial cells.
Thymic stromal lymphopoietin (TSLP), an immunomodulating potentially disease-inducing cytokine, is overproduced in TLR3-stimulated bronchial epithelial cells from asthmatic donors whereas production of antiviral IFNβ is deficient. It is of therapeutic interest that capsazepine inhibits epithelial TSLP and relaxes human small airways with similar potencies. However, it is not known if other capsazepine-like compounds share such dual actions. This study explores epithelial anti-TSLP and anti-IFNβ effects of capsazepine and novel capsazepine-like bronchorelaxants. We used primary bronchial epithelial cells from asthmatic and chronic obstructive pulmonary disease (COPD) donors, and human small airways dissected from surgically removed lungs. Seven novel capsazepinoids were about 10 times, and one compound (RES187) >30 times, more potent than capsazepine as relaxants of LTD(4)-contracted small airways. TLR3-induced TSLP, TNFα, CXCL8, and IFNβ mRNA and protein levels were dose-dependently and non-selectively inhibited by capsazepine, equally in cells from asthmatic and COPD donors. The novel compounds, except RES187, reduced TSLP and IFNβ but none are more potent than capsazepine. Only capsazepine consistently inhibited TNFα and CXCL8 production and attenuated TLR3-induced epithelial NF-κB signalling. Hence, the present compounds did not separate between inhibition of TLR3-induced epithelial TSLP and IFNβ, but all compounds, except capsazepine, did separate between the bronchorelaxant and the epithelial immune effects. We conclude that similar mechanisms may be involved in capsazepine-like inhibition of TLR3-induced epithelial TSLP and IFNβ and that these are distinct from mechanisms involved in relaxation of small airways by these compounds. Topics: Adult; Aged; Asthma; Base Sequence; Bronchi; Bronchodilator Agents; Capsaicin; Cells, Cultured; Cytokines; Epithelial Cells; Female; Humans; In Vitro Techniques; Interferon-beta; Male; Middle Aged; Pulmonary Disease, Chronic Obstructive; RNA, Messenger; Thymic Stromal Lymphopoietin; Toll-Like Receptor 3; Young Adult | 2012 |
dsRNA-induced expression of thymic stromal lymphopoietin (TSLP) in asthmatic epithelial cells is inhibited by a small airway relaxant.
Thymic Stromal Lymphopoietin (TSLP) is considered a hub cytokine that activates dendritic cells and T-cells producing asthma-like Th₂-inflammation. Viral stimuli, a major cause of asthma exacerbations, have been shown to induce overexpression of TSLP in asthmatic epithelium. Capsazepine has multiple effects and is of interest because it relaxes human small airways. Here we have explored effects of capsazepine on viral surrogate (dsRNA)-induced TSLP and other cytokines (TNF-alpha, IL-8) in human bronchial epithelial cells (HBEC) from healthy and asthmatic donors.. HBEC obtained from healthy and asthmatic subjects were grown and stimulated with dsRNA. Cells pre-treated with capsazepine (3-30 μM), dexamethasone (0.1-10 μM) or an IkappaB-kinase inhibitor (PS1145, 30 μM) were also exposed to dsRNA (10 μg/ml). Cells and supernatants were harvested for analyses of gene expression (RT-qPCR) and protein production (ELISA,Western blot).. dsRNA-induced TSLP, TNF-alpha, and IL-8 in asthmatic and non-asthmatic HBEC. Dexamethasone attenuated gene expression and protein release whereas capsazepine dose-dependently, and similar to a non-relaxant NFkB inhibitor (PS1145), completely inhibited dsRNA-induced TSLP and TNF-alpha in both healthy and asthmatic HBEC. Capsazepine reduced dsRNA-induced IL-8 and it prevented dsRNA-induced loss of the NF-κB repressor protein IkBα.. Additional to its human small airway relaxant effects we now demonstrate that capsazepine has potent anti-inflammatory effects on viral stimulus-induced cytokines in HBEC from healthy as well as asthmatic donors. Based on these data we suggest that exploration of structure-activity amongst the multifaceted capsazepinoids is warranted in search for compounds of therapeutic value in viral-induced, steroid-resistant asthma. Topics: Anti-Inflammatory Agents; Asthma; Bronchi; Capsaicin; Cell Survival; Cells, Cultured; Cytokines; Dexamethasone; Epithelial Cells; Humans; I-kappa B Proteins; NF-KappaB Inhibitor alpha; RNA, Double-Stranded; RNA, Messenger; Thymic Stromal Lymphopoietin; Tumor Necrosis Factor-alpha | 2011 |