capsazepine and Acute-Disease

capsazepine has been researched along with Acute-Disease* in 5 studies

Other Studies

5 other study(ies) available for capsazepine and Acute-Disease

ArticleYear
Involvement of TRPV1 channels in the activity of the cannabinoid WIN 55,212-2 in an acute rat model of temporal lobe epilepsy.
    Epilepsy research, 2016, Volume: 122

    The exogenous cannabinoid agonist WIN 55,212-2, (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl) pyrrolo[1,2,3-de]-1,4-benzoxazin-6-Yl]-1-naphthalenylmethanone (WIN), has revealed to play a role on modulating the hyperexcitability phenomena in the hippocampus. Cannabinoid-mediated mechanisms of neuroprotection have recently been found to imply the modulation of transient receptor potential vanilloid 1 (TRPV1), a cationic channel subfamily that regulate synaptic excitation. In our study, we assessed the influence of pharmacological manipulation of TRPV1 function, alone and on WIN antiepileptic activity, in the Maximal Dentate Activation (MDA) acute model of temporal lobe epilepsy. Our results showed that the TRPV1 agonist, capsaicin, increased epileptic outcomes; whilst antagonizing TRPV1 with capsazepine exerts a protective role on paroxysmal discharge. When capsaicin is co-administered with WIN effective dose of 10mg/kg is able to reduce its antiepileptic strength, especially on the triggering of MDA response. Accordingly, capsazepine at the protective dose of 2mg/kg managed to potentiate WIN antiepileptic effects, when co-treated. Moreover, WIN subeffective dose of 5mg/kg was turned into effective when capsazepine comes into play. This evidence suggests that systemic administration of TRPV1-active drugs influences electrically induced epilepsy, with a noticeable protective activity for capsazepine. Furthermore, results from the pharmacological interaction with WIN support an interplay between cannabinoid and TRPV1 signaling that could represent a promising approach for a future pharmacological strategy to challenge hyperexcitability-based diseases.

    Topics: Acute Disease; Animals; Anticonvulsants; Benzoxazines; Cannabinoid Receptor Modulators; Capsaicin; Disease Models, Animal; Electric Stimulation; Epilepsy, Temporal Lobe; Male; Membrane Transport Modulators; Morpholines; Naphthalenes; Rats, Wistar; Receptor, Cannabinoid, CB1; TRPV Cation Channels

2016
Acute myocardial ischemia enhances the vanilloid TRPV1 and serotonin 5-HT3 receptor-mediated Bezold-Jarisch reflex in rats.
    Pharmacological reports : PR, 2011, Volume: 63, Issue:6

    The Bezold-Jarisch reflex is characterized by a sudden bradycardia associated with hypotension induced by the activation of the vanilloid TRPV1 and serotonin 5-HT(3) receptors. This reflex is associated with several health conditions, including myocardial infarction. The aim of the present study was to elucidate the influence of acute experimental myocardial ischemia on the reflex bradycardia induced by anandamide and phenylbiguanide, agonists of the TRPV1 and 5-HT(3) receptors, respectively. In urethane-anesthetized rats, the rapid iv injection of anandamide (0.6 μmol/kg) or phenylbiguanide (0.03 μmol/kg) decreased heart rate (HR) by about 7-10% of the basal values. Myocardial ischemia (MI) was induced by ligation of the left anterior coronary artery. The agonists were injected 5 min before MI (S(1)) and 10, 20 and 30 min thereafter (S(2)-S(4)). MI potentiated the anandamide-induced reflex bradycardia by approximately 105% at S(2) and 70% at S(3) but had no effect at S(4). This amplificatory effect of MI was virtually abolished by the TRPV1 receptor antagonist capsazepine (1 μmol/kg) and was not modified by the cannabinoid CB(1) receptor antagonist rimonabant (0.1 μmol/kg). MI also amplified the reflex bradycardia elicited by phenylbiguanide by approximately 110, 60 and 90% (S(2), S(3) and S(4), respectively), and this effect was sensitive to the 5-HT(3) receptor antagonist ondansetron (3 μmol/kg). In conclusion, our results suggest that acute myocardial ischemia augments the Bezold-Jarisch reflex induced via activation of TRPV1 and 5-HT(3) receptors located on sensory vagal nerves in the heart.

    Topics: Acute Disease; Animals; Capsaicin; Male; Myocardial Ischemia; Rats; Rats, Wistar; Receptors, Serotonin, 5-HT3; Reflex; TRPV Cation Channels; Vagus Nerve Stimulation

2011
The proteinase/proteinase-activated receptor-2/transient receptor potential vanilloid-1 cascade impacts pancreatic pain in mice.
    Life sciences, 2010, Nov-20, Volume: 87, Issue:19-22

    Proteinase-activated receptor-2 (PAR2) and transient receptor potential vanilloid-1 (TRPV1) are co-localized in the primary afferents, and the trans-activation of TRPV1 by PAR2 activation is involved in processing of somatic pain. Given evidence for contribution of PAR2 to pancreatic pain, the present study aimed at clarifying the involvement of TRPV1 in processing of pancreatic pain by the proteinase/PAR2 pathway in mice.. Acute pancreatitis was created by repeated administration of cerulein in conscious mice, and the referred allodynia/hyperalgesia was assessed using von Frey filaments. Injection of PAR2 agonists into the pancreatic duct was achieved in anesthetized mice, and expression of Fos in the spinal cord was determined by immunohistochemistry.. The established referred allodynia/hyperalgesia following cerulein treatment was abolished by post-treatment with nafamostat mesilate, a proteinase inhibitor, and with capsazepine, a TRPV1 antagonist, in mice. Injection of trypsin, an endogenous PAR2 agonist, or SLIGRL-NH(2), a PAR2-activating peptide, into the pancreatic duct caused expression of Fos protein in the spinal superficial layers at T8-T10 levels in the mice. The spinal Fos expression caused by trypsin and by SLIGRL-NH(2) was partially blocked by capsazepine, the former effect abolished by nafamostat mesilate.. Our data thus suggest that the proteinase/PAR2/TRPV1 cascade might impact pancreatic pain, in addition to somatic pain, and play a role in the maintenance of pancreatitis-related pain in mice.

    Topics: Acute Disease; Animals; Benzamidines; Capsaicin; Ceruletide; Disease Models, Animal; Gene Expression Regulation; Guanidines; Hyperalgesia; Male; Mice; Oligopeptides; Pain; Pancreatitis; Proto-Oncogene Proteins c-fos; Receptor, PAR-2; Spinal Cord; TRPV Cation Channels

2010
Activation of sensory neurons reduces ischemia/reperfusion-induced acute renal injury in rats.
    Anesthesiology, 2009, Volume: 110, Issue:2

    Prostaglandin I2 (PGI2) produced by endothelial cells improves ischemia/reperfusion-induced acute renal injury by inhibiting leukocyte activation in rats. However, the underlying mechanism(s) of increased PGI2 production is not fully understood. Activation of sensory neurons increases endothelial PGI2 production by releasing calcitonin gene-related peptide (CGRP) in rats with hepatic ischemia or reperfusion. We examined here whether activation of sensory neurons increases PGI2 endothelial production, thereby reducing ischemia/reperfusion-induced acute renal injury.. Anesthetized rats were subjected to 45 min of renal ischemia/reperfusion. Rats were pretreated with CGRP, capsazepine (a vanilloid receptor-1 antagonist), CGRP(8-37) (a CGRP receptor antagonist), or indomethacin (a cyclooxygenase inhibitor), or subjected to denervation of primary sensory nerves before ischemia/reperfusion.. Renal tissue levels of CGRP and 6-keto-prostaglandin F1alpha, a stable metabolite of PGI2, increased after renal ischemia/reperfusion, peaking at 1 h after reperfusion. Overexpression of CGRP was also noted at 1 h after reperfusion. Increases in renal tissue levels of 6-keto-prostaglandin F1alpha at 1 h after reperfusion were significantly inhibited by pretreatment with capsazepine, CGRP(8-37), and indomethacin. Pretreatment with capsazepine, CGRP(8-37), indomethacin, and denervation of primary sensory nerves significantly increased blood urea nitrogen and serum creatinine levels, renal vascular permeability, renal tissue levels of myeloperoxidase activity, cytokine-induced neutrophil chemoattractant, and tumor necrosis factor-alpha, and decreased renal tissue blood flow. However, pretreatment with CGRP significantly improved these changes.. Our results suggest activation of sensory neurons in the pathologic process of ischemia/reperfusion-induced acute renal injury. Such activation reduces acute renal injury by attenuating inflammatory responses through enhanced endothelial PGI2 production.

    Topics: 6-Ketoprostaglandin F1 alpha; Acute Disease; Animals; Anti-Inflammatory Agents, Non-Steroidal; Calcitonin Gene-Related Peptide; Calcitonin Gene-Related Peptide Receptor Antagonists; Capillary Permeability; Capsaicin; Chemokine CCL2; Denervation; Immunohistochemistry; Indomethacin; Kidney; Kidney Diseases; Male; Peptide Fragments; Peroxidase; Rats; Rats, Wistar; Renal Circulation; Reperfusion Injury; Sensory Receptor Cells; TRPV Cation Channels; Tumor Necrosis Factor-alpha

2009
Attenuation of acid induced oesophagitis in VR-1 deficient mice.
    Gut, 2006, Volume: 55, Issue:1

    Activation of the vanilloid receptor subtype 1 (VR-1) results in release of proinflammatory peptides which initiate an inflammatory cascade known as neurogenic inflammation. We investigated its role in an acute model of surgically induced oesophagitis.. Oesophagitis was induced by pyloric ligation in wild-type and VR-1 deficient mice. A subset of animals were administered the VR-1 antagonist capsazepine, famotidine, or omeprazole one hour before surgery. Five hours after surgery, myeloperoxidase activity (MPO), histological damage scores, intragastric pH, and immunocytochemical analysis of substance P (SP) receptor endocytosis were determined.. Oesophagitis induced knockout mice exhibited significantly lower levels of MPO activity, histological damage scores, and SP receptor endocytosis than wild-type mice. Inflammatory parameters were significantly reduced by acid inhibition and capsazepine in wild-type mice.. We conclude that acute acid induced oesophagitis is reduced in animals lacking VR-1. This suggests that acid induced oesophagitis may act through VR-1 and that inhibition of the receptor may reduce inflammation.

    Topics: Acute Disease; Animals; Anti-Ulcer Agents; Capsaicin; Endocytosis; Esophagitis; Famotidine; Hydrogen-Ion Concentration; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Microscopy, Confocal; Omeprazole; Peroxidase; Receptors, Neurokinin-1; Severity of Illness Index; TRPV Cation Channels

2006