capillarisin has been researched along with Edema* in 2 studies
2 other study(ies) available for capillarisin and Edema
Article | Year |
---|---|
Anti-hyperalgesic and anti-allodynic activities of capillarisin via suppression of inflammatory signaling in animal model.
Artemisia capillaris has widespread traditional and pharmacological applications such as analgesic, anti-inflammatory, anti-pyretic, enhance immunity and anti-tumor activity properties. To evaluate the pharmacological activities of this plant, capillarisin, one of the potent constituent of Artemisia capillaris was studied based on anti-hyperalgesic and anti-allodynic effects with detailed mechanism. It can be assumed that measurement of anti-nociceptive effects of capillarisin is one of the parameter for the evaluation of this herb. Capillarisin has extensive pharmacological properties and has been considered to have promising ant-inflammatory and anti-nociceptive activities. The aim of the current study is to investigate the effect of capillarisin and underlying molecular mechanisms of action in preventing acute and subchronic inflammatory pain.. The inflammatory pain was induced after 40 min or 1h of administration of vehicle, 70% EtOH extract of Artemisia capillaris (100mg/kg) or capillarisin (20 and 80 mg/kg) by intraplantar (i.p.l.) injections of CFA and carrageenan in ICR mice, respectively. Mechanical hyperalgesia and allodynia were evaluated in both acute and subchronic models. Further analysis was performed in CFA-induced mice exploring various molecular and signaling pathways such as NF-κB, AP-1, and ERK-CREB involved in the persistent pain sensations.. In acute model, mechanical hyperalgesia and allodynia were evaluated after every 2h until 6h of CFA and after 4h of carrageenan injections. Whereas, in subchronic inflammatory pain model, mechanical hyperalgesia and paw edema were measured after 4h of CFA injection and every day after 4h of daily treatment until 5 days with interval of day four in order to assess the tolerance effect of capillarisin. Further analysis was performed in CFA-induced mice exploring various molecular and signaling pathways such as NF-κB, AP-1 and ERK-CREB involved in the persistent of pain sensations. Pre-treatment of capillarisin strongly inhibited NF-κB mediated genes (iNOS, COX-2), involved in pain. The plasma leading nitrite production was significantly reduced by capillarisin. Moreover, i.p. administration of capillarisin markedly suppressed the adenosine 5׳-triphosphate (ATP) in plasma and substance P in CFA-induced paw tissue.. The present study indicates that capillarisin possessed promising anti-hyperalgesic and anti-allodynic effects through the inhibition of various inflammatory pain signaling, suggesting that capillarisin constitutes a significant component for the treatment of inflammatory pain. Topics: Analgesics; Animals; Anti-Inflammatory Agents; Artemisia; Carrageenan; Chromones; Disease Models, Animal; Dose-Response Relationship, Drug; Edema; Hyperalgesia; Inflammation; Male; Mice; Mice, Inbred ICR; Pain; Plant Extracts; Signal Transduction | 2014 |
Molecular mechanism of capillarisin-mediated inhibition of MyD88/TIRAP inflammatory signaling in in vitro and in vivo experimental models.
Artemisia capillaris Thunberg (Compositae) have been used as traditional medicine as a diuretic, liver protective agent, and for amelioration of inflammatory and analgesic disorders. The present study was carried out to establish the scientific rationale for treating inflammation and to find active principles from A. capillaris. The aim of the present study is to investigate the possible anti-inflammatory mechanism of the major component (capillarisin) isolated from A. capillaris via inhibition of MyD88/TIRAP inflammatory signaling both in vitro and in vivo models.. The nitrite, PGE(2), and TNF-α productions were evaluated by Griess reagent and ELISA kits. The protein and mRNA expression levels were investigated by Western blot and RT-PCR. The NF-κB and AP-1 DNA-binding was performed by electrophoretic mobility shift assay. The CFA- and carrageenan-induced paw edema was performed in ICR mice in which 20 and 80 mg/kg body weight of capillarisin was administered intraperitoneally (i.p.).. The results demonstrated that pretreatment with capillarisin effectively inhibited the LPS-induced activation of NF-κB, Akt, and MAP kinase-activated inflammatory genes, which is mediated by MyD88 and TIRAP. Treatment with capillarisin reduced the mRNA and protein levels of iNOS and COX-2 in RAW 264.7 cells as assessed by RT-PCR and Western blot. Capillarisin suppressed LPS-induced inhibitory kappa kinase (IKK) phosphorylation and the degradation of inhibitory kappa B (IκBα) and prevented the nuclear translocation of p65 and p50. Capillarisin also exhibited a promising inhibitory effect on the LPS-induced NF-κB and AP-1 DNA binding activity based on an electrophoretic mobility shift assay. The LPS-induced activation of p-JNK, p-p38, p-ERK, and p-Akt was significantly inhibited. In addition, the TNF-α level in the media was effectively reduced by capillarisin. In vivo experimental analysis revealed that capillarisin (20 and 80 mg/kg, i.p.) inhibited complete Freund's adjuvant (CFA)-and carrageenan-induced paw edema, nitrite production in plasma, and TNF-α, a pro-inflammatory cytokine production.. The results presented here demonstrate that capillarisin has consistent anti-inflammatory properties and acts by inhibiting inflammatory mediators in in vitro and in vivo experimental models, and suggest its potential utility in the control of inflammatory disorders. Topics: Animals; Anti-Inflammatory Agents; Artemisia; Carrageenan; Cell Line; Chromones; Cyclooxygenase 2; Dinoprostone; Edema; Inflammation; Lipopolysaccharides; Male; Membrane Glycoproteins; Mice; Mice, Inbred ICR; Myeloid Differentiation Factor 88; NF-kappa B; Nitric Oxide; Nitric Oxide Synthase Type II; Phytotherapy; Receptors, Interleukin-1; Signal Transduction; Transcription Factor AP-1; Tumor Necrosis Factor-alpha | 2013 |